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§ 1. The Second Law of Thermodynamics

According to the principles of thermodynamics one can introduce for
any macroscopic system a state function S, the entropy of the system,
which has the following properties.

The variation of the entropy dS may be written as the sum of two
terms

dS=d,S +4d;S, . (1)

where d.S is the entropy supplied to the system by itssurroundings, and
d;S the entropy produced inside the system. The second law of thermo-
dynamics states that d;S must be zero for reversible (or equilibrium)
transformations and positive for irreversible transformations of the
system:

d;S >0. (2)

The entropy supplied, d.S, on the other hand may be positive, zero or
negative, depending on the interaction of the system with its sur-
roundings. Thus for an adiabatically insulated system (z.e. a system
which can exchange neither heat nor matter with its surroundings)
d.S is equal to zero, and it follows from (1) and (2) that

dS > 0 for an adiabatically insulated system. (3
This is a well-known form of the second law of thermodynamics.

For a so-called closed system, which may only exchange heat with
its surroundings, we have according to the theorem of Carnot-Clausius:

do
d.S =%, 4)

where d(Q is the heat supplied to the system by its surroundings and T

20
[S.R. de Groot & P. Mazur.
North Holland 1962]

Non-equilibrium Thermody#ai /cs

the absolute temperature at which heat is received by the system.
From (1) and (2) it follows for this case that

das > %(;')— for a closed system , (5)

which is also a well-known form of the second law of thermodynamics.

For open systems, 7.e. systems which may exchange heat as well as
matter with their surroundings d.S contains also a term connected
with the transfer of matter (cf. also § 2 of this chapter). The theorem of
Carnot—Clausius, which is contained in formulae (1), (2) and (4), does
not apply to such systems. However the very general statements
contained in (1) and (2) alone remain valid.

We may remark at this point that thermodynamics in the customary
sense is concerned with the study of the reversible transformations for
which the equality in (2) holds. In thermodynamics of irreversible
processes, however, one of the important objectives is to relate the
quantity d,S, the entropy production, to the various irreversible
phenomena which may occur inside the system. Before calculating the
entropy production in terms of the quantities which characterize the
irreversible phenomena, we shall rewrite (1) and (2) in a form which is
more suitable for the description of systems in which the densities of
the extensive properties (such as mass and energy, considered in the
previous chapter) are continuous functions of space coordinates. Let
us write

| 4
= f psdV (6)

Q2
= - J-Js,lot'd!2 ’ (7)

d,S ®)

where s is the entropy per unit mass, Jj, ., the total entropy flow per
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which is also a well-known form of the second law of thermodynamics.

For open systems, 7.e. systems which may exchange heat as well as
matter with their surroundings d,S contains also a term connected
with the transfer of matter (cf. also § 2 of this chapter). The theorem of
Carnot-Clausius, which is contained in formulae (1), (2) and (4), does
not apply to such systems. However the very general statements
contained in (1) and (2) alone remain valid.

We may remark at this point that thermodynamics in the customary
sense is concerned with the study of the reversible transformations for
which the equality in (2) holds. In thermodynamics of irreversible
processes, however, one of the important objectives is to relate the
quantity d,S, the entropy production, to the various irreversible
phenomena which may occur inside the system. Before calculating the
entropy production in terms of the quantities which characterize the
irreversible phenomena, we shall rewrite (1) and (2) in a form which is
more suitable for the description of systems in which the densities of
the extensive properties (such as mass and energy, considered in the
previous chapter) are continuous functions of space coordinates. et
us write

| 4
S = f psdV ()
s @
dz = - f"s,(ot'dﬂ ) (7)
\ 4
d,S
= f cdV, ®)

where s is the entropy per unit mass, J;, ., the total entropy flow per
unit area and unit time, and ¢ the entropy source strength or entropy
production per unit volume and unit time.

With (6), (7) and (8), formula (1) may be rewritten, using also Gauss’

theorem, in the form

1 4

9
f (di: + div J, o — a) v =0. 9)

From this relation it follows, since (1) and (2) must hold for an arbitrary
volume V, that
dps

Y —divJs.tot"}'o"

T (10)

c>0. (11)
These two formulae are the local forms of (1) and (2), 7.e. the local
mathematical expression for the second law of thermodynamics.
Equation (10) is formally a balance equation for the entropy density
ps, with a source term o which satisfies the important inequality (11).
With the help of relation (II.16), equation (10) can be rewritten in a
slightly different form,
ds

P = —divJ, + o,

(12)

where the entropy flux J is the difference between the total entropy
flux J, . and a convective term psv
Js = Js,tot - pSV. (13)
In obtaining (10) and (11) we have assumed that the statements (1)
and (2) also hold for infinitesimally small parts of the system, or in
other words, that the laws which are valid for macroscopic systems
remain valid for infinitesimally small parts of it. This is in agreement
with the point of view currently adopted in a macroscopic description
of a continuous system. It implies, on a microscopic model, that the
local macroscopic measurements performed on the system, are really
measurements of the properties of small parts of the system, which
still contain a large number of the constituting particles. Such small

[S.R. de Groot & P. Mazur. Non-equilibriHils T R R AR A ou e toce valve of such

North Holland 1962]

fundamentally macroscopic concepts as entropy and entropy pro-
luction
ductio
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(a)

(b)

(c)

(Entropy balance)
The entropy is an additive quantity whose equation of balance in regular
points of the body we write as

apn

d
5t +? (pnv;+P;)=0. (6.20)

(Constitutive property)
The specific entropy n and its flux @, are an objective scalar and vector
respectively and both are given by constitutive relations that obey the
principle of material frame indifference. In particular in a mixture of
inviscid fluids we have

n=nlps. T)
v N (6.21)
O;=3 @hop+ 2 VW +erT,,
fie=1 A=

where ¢f, ¢} and ¢, may be functions of p;, T

(Entropy inequality)
The entropy production ¢ is non-negative for all thermodynamic
processes, so that the inequality

dpn
—— = D )=0 6.22
ot +a j(‘ﬂﬂ”jﬁ‘ i) ( )
holds.
_[I. Mdller. Thermodynamics. Pitman 1985]
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Therefore the local forms of the balance equations, viz.

F5) S |

L) . i _ il e
5 B = J1 with FF=F(F% and IT=TI{F") (1)

provide a system of first-order, quasi-linear differential equations for the densities F”. The form
of the constitutive functions is restricted in its generality by just two universal principles

e the entropy principle, and
» the principle of relativity.

In this respect rational extended thermodynamics reflects the procedure of rational mechanics by
Truesdell & Noll [1] and rational thermodynamics by Truesdell [2].

The entropy principle requires that the entropy inequality

Ejhﬂ ah’i 5 (3 0 0 £ i 0 0
o T =E20  with  KO=R(F%), K =H(F), B=1(F) (2)

hold for all solutions of the field equations (1) and that h(F?) be a concave function. The principle
of relativity states that the field equations (1) have the same form in all Galilean frames. The two
principles together go a long way to make the constitutive functions explicit. And they ensure
that the system (1) has symmetric hyperbolic structure.

[I. Muller & T. Ruggeri. Rational Extended Thermodynamics
Springer Tracts in Natural Philosophy 37, 1998]
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AC AV [
A
p dte +V - E+n-[(v-v)ple—e’)+3.]_.=0 (2.5.4)

The excess energy flow is along the dividing surface [cf. Eq. (2.3.7)]:

n-¥X=0 (2.5.5)

Using the balance equations (2.4.10) and (2.4.13) for the kinetic- and
potential-energy densities as well as the balance equation (2.5.4) for the
total energy, one finds as the balance equation for the excess internal
energy

dS n

P —u=-V 5-P:Vv+ ) F B

dt k=1
—n-{v—-vplu—u*-v—-v|*]+1,
+[(v=v)p(v—v)+P]- (v—v)}_ (2.5.6)

It follows from Egs. (2.2.15), (2.4.4), and (2.5.3) that the excess heat flow

is also along the dividing surface:

n-3=0 2.5.7)

The internal energy of the system is not conserved, because of conversion
of kinetic and potential energy into internal energy. The balance equation
(2.5.6) for the excess internal energy gives the first law of ther-
modynamics for the interface.

. ENTROPY BALANCE
A. The Second Law of Thermodynamics

The balance equation for the entropy density is given by
a .
Ezps +div(psv+¥)=0o 3.1.1

where s is the entropy density per unit of mass, J is the entropy current,*

* The subscript s used in de Groot and Mazur® has been dropped because it would in this
case clearly be confusing.

One may now conclude® from the second law of thermodynamics that
o"=0 (3.1.3)

For the interface, one finds the following balance equation [cf. Eq.
(2.3.6)]:

s

psg—tss=—~V'Js—n- [(v—-v)p(s —s°)+F]_+o° (3.14)

From the second law of thermodyanics, it now follows that
o*=0 (3.1.5)

As is to be expected, not only is entropy produced in the bulk regions,
but there is also an excess of this production in the interfacial region,
which according to the second law is also positive.

B. The Entropy Production

From thermodynamics we know that the entropy for a system in
equilibrium is a well-defined function of the various parameters necessary
to define the macroscopic state of the system. As discussed already by
Gibbs,” this is also the case for a system with two phases separated by a
surface of discontinuity. For the system under consideration, we use as
parameters the internal energy, the specific volume v* = 1/p* or specific
surface area v°=1/p°, and the mass fractions. We may then write

sT=s(u",v7,¢h), sT=s(ut, v, ct), and s=s%(u®, 0%, ¢})
(3.2.1)

Three different functions are needed to give the entropies for the two
bulk phases and for the interface. At equilibrium the total differential of
the entropy is given by the Gibbs relation. In the bulk.regions, this

[D. Bedeaux. Nonequilibrium Thermodynamics and Statistical
Physics of Surfaces. Advance in Chemical Physics, Vol. LXIV, Wiley 1986]
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Standard definition for a set P of processes
For each solution in P there exists an entropy pair (H, V) with

OH +divw >0 inD(Q), QcCRxR"

Equation transforms as a scalar equation (i.e. (oY = (¥)
(= H objective scalar, W objective vector)

Entropy principle means for test funcions (:
Goes back to entropy principle for funcions in (¢, x):

(¢, H) = [énd(t,a) for ¢ € CE()  (n entropy)
Q2

similar W = +L,41L.Q (3 entropy flux), such that
o.:=0on+divyy >0 pointwise in Q C R x R"

Of course, there are constitutive relations for (n,vy) depending on P

H.W. Alt TU Munchen 29. Nov. 2012



Example 1 :

Opuy, + divgg(u) = fr,(u) (k=1,...,N)

Constitutive ansatz : n=n(w) , ¥ =¥ (w) , v = (u1,...,un)

Om =Y nnlur = — > ndivay + > 0o fr

k k k
0<o:= 8m + divy = divy — Zn/kddik + Zn’kfk
k k
— Z (¢’l - anqu'z)°vw + Zn’kfk
l k k

Requirement: This holds for all solutions of the system

Result : Entropy principle is satisfied, if
Yi(u) = Zn/k(u)qk/l(u) for all I (j D277Dq = (Dq)TDQn)
k

> e (u) fr(u)>0 (= Vnef>0)
k

Entropy principle has consequence for u — fi(u) and u — qi;(u) of the system

H.W. Alt TU Munchen 29. Nov. 2012



Example 2 :

Oro + div(ev) =0

01 (ov) + div(ovv' +N) = f (M pressure tensor)
ore + div(ev +MN"Tv 4+ q) = vef (e total energy)
e=5—|—§|fu|2 (e inner energy)

Constitutive ansatz : n =17(o,e) (n is objective scalar)

0+ odivo =0 ("= 0t + veV)
e + edivv = —divg — DwelT (here no force f)
0 <o :=0m—+ divy = 1+ ndive 4+ div(yp — nv)
= n1,0 + i€ + ndive + div(y — nv)
= —n, divg + Dv-((n — onr, — eni)ld — n,gn) + div(y) — nv)
V??/&Jq —+ Dvo((n — Q?]/Q — 877/€)Id — 77/€|_|)
+div(y — nv — n1.q)

Temperature : 0 with & =n,.(g,€) > 0

H.W. Alt TU Munchen 29. Nov. 2012



Use temperature and obtain 1
0 < o 1= dm + diva 0
= V1n.eq + Dv-((n —onrp —eni)ld — 77/5”)
+div(y —nv —n/.q)

1 1 . 1
— V<5)oq -+ D’Uo(E(pId — rl)) + div(y) — nv — gq)
n—on
where p = %/5(77 — Q’I?/Q — 877/6) = —£ —I— 0 ‘o

Requirement : o > 0 for all solutions of the system
Result : Entropy principle is satisfied, if

M =pld - S (Momentum tensor)

1
Y = nv + Pl (Clausius-Duhem flux)
n=on,+ (+p)n, (Gibbs relation)

1 1
o= gDvoS + V<5>oq >0 (Dissipative terms)

Entropy principle has consequences for the system

H.W. Alt TU Munchen 29. Nov. 2012
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Let (0,e) — m(p,€) be the entropy and define

1
6 =— >0 temperature p pressure
YR
1
f = ¢ —0n internal free energy Vs = — specific volume
Y
Ns = T etc. specific quantities
o
T he following is equivalent :
e n=on,+ (e+p)n, (Gibbs Relation)
® nsr,+ (es + ps)nsie =0
1
o dns = des + gdvs (Second Law: “dS = 1dQ")

[ dfs — —17Is do — pdVS
° d(€5 -+ ps) =0 d?75 + vg dp (85 -+ Ps IS the enthalpy)

This follows by computing differential forms with (o, &) as unknowns
Hence the classical formulas hold e.g. for homogeneous systems

H.W. Alt TU Munchen 29. Nov. 2012
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Zeroth Law

First Law

Second Law

There exists for every thermodynamic system in equilibrium
a property called temperature. Equality of temperature is a
necessary and sufficient condition for thermal equilibrium.

There exists for every thermodynamic system a property
called the energy. The change of energy of a system is equal
to the mechanical work done on the system in an adiabatic
process. In a non-adiabatic process, the change in energy is
equal to the heat added to the system minus the mechanical
work done by the system.

There exists for every thermodynamic system in equilibrium
an extensive scalar property called the entropy, S, such that
in an infinitesimal reversible change of state of the system,
dS = dQ/T, where T is the absolute temperature and dQ is
the amount of heat received by the system. The entropy of
a thermally insulated system cannot decrease and is constant
if and only if all processes are reversible.

[MIT, Lecture on Thermodynamics (Spakovszky, Fall 2008)]
(This is the so-called “axiomatic formulation™)

H.W. Alt
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Zeroth Law

First Law

Second Law

There exists for every thermodynamic system in equilibrium
a property called temperature. Equality of temperature is a
necessary and sufficient condition for thermal equilibrium.

6 absolute temperature

There exists for every thermodynamic system a property
called the energy

e (total) energy
ore + divp = ...

There exists for every thermodynamic system in equilibrium
an extensive scalar property called the entropy, S, such that
in an infinitesimal ... change ... of the system, dS = dQ/T

1
n entropy, Nie = 5, € internal energy

The entropy of a thermally insulated system cannot decrease

ogn + divyp > 0

H.W. Alt
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Example 3 :

Two particles with mass m® which move with speed v® at space points z¢
Collision : At (t, zx), i.e. x« =T (ts) = T°(t4). Let

(¢, pia) = / C(t,7°(8)) dt for ¢ € CF(R x R R)

Distributional mass-momentum-energy balance

815(2771 Yo ) + div (Zmavo‘p—a) =0
&(Zm v ,u,—a> —|—dIV<ZmO‘ aeT a> :Zfa —o
&:(Zeaufa) + div (Zeo‘vap,fa) = Zvaofo‘pﬁa, — @ _|_ |,Uoz|2

(67 [0 [0

is equivalent to v*(¢,z(t)) =z (¢t) and m®, £ locally constant in ¢ ;é t, and

moz® = f* fora =1,2 and t £ t,
m: +m2 = mil+m3 (mass conservation in t.)
—|— m2v2 = mivl +mivi (momentum conservation in t.)
mOé
Z (s? + 7‘\@ ) = Z (g‘j‘r + f‘”iF) (energy conservation in t,)
(87 (8

What is the entropy principle?

H.W. Alt TU Munchen 29. Nov. 2012

14



Use an entropy n® and the claim is: With an entropy production h

B my = 0n( Y nme) +div (S 0"z > 0

[0

This identity is equivalent to
—(Ch) (e, w) = = (¢, hb(r 0y ) <at<, > npr > + <vc, Zn“v“#za>

=3 / (810 (1, 7 ()" (1, 7)) it + / (VO (M) (M) (LF W), dr
" (6,7 0)E (1)
=% / (cea @) @a=Y [ Lt @meaw))d

“R\{t.} “ R\{t.}
(if n® = n*(m™, &%) and since (m®*, &%) is locally constant for ¢t #= t.)

=Ytz () =) = (b, 2) Y (0% — )

that is, if n® = n®(m=,e*) for t £ t.,

then the entropy principle is equivalent to Zm— — Zm+
h(t, ) + an — Zni ngvg — ij‘_vi
o o} o N
h(t*’x*) >0 ( — 2) _ ( o' m+ o’ 2)
Z Lo e _ ) my
(= e > (e + Shusd

H.W. Alt TU Munchen 29. Nov. 2012 15



Example 4 :

The equations for a fluid are
Oro + div(pv) =0
9 (ov) 4 div(pvv' + M) =, M=pld-S
e + div(ev +MNTv + q) = vef, €:€_|_§|U|2

1 1 1 _
dm + div(nv + gq) = - Duves + V(g)Oq >0, n=1n(e,e) = ony+ (e+p)ne

Neglecting S = 0 and g ~ 0 one considers
weak solutions (that is, L°-solutions) of the gas equations

dro + div(pv) =0
3i(ov) +div(euv' +pld) =f,  n=on,+ (¢ +p)n-
ore + div((e + p)v) = vef | e=€—|—§|v\2

These are distributional solutions. One considers only solutions satisfying
om +div(nv) >0, n=1n(e,¢)

Remark: For smooth solutions (p,v,e) one has oy + div(nv) = 0.
What is the meaning of this inequality? It defines the correct shocks!

Case: An interface I with Q =QlUru?2 c R x R

H.W. Alt TU Munchen 29. Nov. 2012
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If the L°°-solution has the form

olnt1 =) o"pgn, similar o™, p™, &™, £, (£, po.) = //g(t,x) dx dt
R Q

m

the above distributional differential equations can be written as

By ZQ fey) + div( ZQ V" o) =0
Oy ( ZQ v o) + div( Z(Qm "™ p ) pgn) = Y pgn

&g(Ze pey) + div( Z(e + P g) =Y v e M,

m m
where p™ = p(o™,e™) and ™ =™ + 7|vm| :
This is equivalent to the differential equations for (o™,v™,e™) in Q™, and on [

Z m(ym ) 0 \ ( M is defined
_ P —
m o e M - vtl@n = M- Utz(m
1 31— 2 32
Z(@m(vm —vr)evgw™ +pTrg) =0 L P+ M-A ‘/\1‘2 tM-A
- m¢,.m m,.m M- <8S +ps + 2 )
Z(e (v — vr)evon + p"v"evgn) = 0 |>\2|2
m / L ( 2 )
Definition: This is called a ‘“shock’, if in the mass conservation

M =o'\ = p2\? £ 0, A= (0™ — ur)eva:

H.W. Alt TU Munchen 29. Nov. 2012 17



For shocks, that is M # 0O, the
momentum and energy balance
on [ say:

1 2
Utan - vtan

pl _|_Ql|>\l|2 :p2+Q2|>\2|2

1 1 |>‘1|2
s +ps + 5

Im zweiten Falle ist der Massenstrom und damit auch #,, und »,, von Null
verschieden. Dann erhalten wir aus (81,1) und (81,4)

[E-’y] =0 > [t’z] =0 5

d. h., die tangentiale Geschwindigkeit ist auf der Unstetigkeitsfliche stetig.
Die Dichte, der Druck (und daher auch die anderen thermodynamischen Gréf3en)
sowie die Normalkomponente der Geschwindigkeit erleiden einen Sprung. Die
Spriinge dieser Gréflen werden durch die Beziehungen (81,1)—(81,3) mitein-
ander verkniipft. In der Bedingung (81,2) kénnen wir auf Grund von (81,1)
p v, kiirzen, und statt »? kann man v; schreiben wegen der Stetigkeit von #,
und »,. Auf der Unstetigkeitefliche miissen also im betrachteten Falle die
Bedingungen

(81,6)

[er] =0,

[A%)2
=es+ps+ -

5 [%‘j o w] =l (8L,7)

[p+ov:] =0

erfiillt sein. Unstetigkeiten dieses Typs nennt man Stofwellen.

Here A := (v™ — vr)evm

§ 82. Die StoBadiabate

Wir kommen jetzt zur ausfithrlichen Untersuchung von Stolwellen. Wie
wir gesehen haben, ist bei diesen Unstetigkeiten die Tangentialkomponente
der Stromungsgeschwindigkeit stetig. Man kann daher ein Koordinatensystem
wihlen, in dem ein betrachtetes Element der Unstetigkeitsfliche ruht und die
Tangentialkomponente der Stréomungsgeschwindigkeit auf beiden Seiten der
Fliche gleich Null ist.!) Dann kann man statt der Normalkomponente v,
einfach » schreiben, und die Bedingungen (81,7) lauten

01V = @ Vp =], (82,1)
P t+o 'UE = P + 02 1’3 ; (82,2)
W+ o=+ (82,3)

[L.D. Landau, E.M. Lifschitz. Lehrbuch der Theoretischen Physik VI.
Hydrodynamik 3. Auflage Akademie-Verlag 1974]

H.W. Alt TU Munchen 29. Nov. 2012 18



The entropy principle is
OH +divw >0, H=) n"po., V=3 1™"po., n"=7n(" ")
m m
That is, the entropy inequality is satisfied in distributional sense.
It is equivalent to
om™ 4+ div(n™v™) =0 in Q™ (since n™ = 1(o™, ™))
an(vm —vr)evag. > 0 on ™
m

and this is (in the shock case) equivalent to (= 1)
ne >n2 if M >0

M- (ns —n3) >0 or
CT ns <mg if M <O

Neben anderen thermodynamischen Groflen erfihrt auch die Entropie in der
Stofiwelle einen Sprung. Auf Grund des Gesetzes vom Anwachsen der Entropie
mull die Entropie des Gases bei dessen Bewegung zunehmen. Daher mul} die
Entropie s, des Gases nach dem Durchgang der StoBwelle grofler sein als der
Anfangswert s, der Entropie:

8g > 8 . (82,11)

Wie wir spiter sehen werden, schrinkt diese Bedingung die Art der Anderung
aller Grofen in einer Stoflwelle wesentlich ein.
[L.D. Landau, E.M. Lifschitz. Lehrbuch der Theoretischen Physik VI.
Hydrodynamik 3. Auflage Akademie-Verlag 1974]

H.W. Alt TU Munchen 29. Nov. 2012



A single balance law is an equality (resp. inequality) of the form
OE + divQ = (resp. <) F  in D'(Q)
Theorem It is equivalent

2 2 2
o D emuan+enr ) +div( D qug.+aur ) = (resp. <) > [Mug.+ Fur
o=l _ m=1 P m=1

TV TV TV

4

and
1. 0w +divg™ = (resp. <) fMform=1,2 in Q™

2. (¢°—e’vpr)(t,z) € Tp(Iy) for all (t,z) €™
2
3. 6{@3 +divi ¢* = (resp. <) 5+ > (@™ —eMvr)evgm on T
m=1
This includes “Rankine-Hugoniot” conditions and “Kotchine” conditions
We have that 9] e® + div' ¢° = 9] e® — e*rkeovr + div' (¢° — e’vr)

[H.W. Alt. The Entropy Principle for Interfaces. Fluids and Solids.
AMSA 19, pp. 585-663, 2009]

H.W. Alt TU Munchen 29. Nov. 2012 20



Unuiies or singuiarities arc assumed Lo arnse on 4.

3. Balance laws on phase boundaries

The phase boundary between ice and water is represented by a moving non-
material singular orientable surface. This is essentially Gibbs's [25] idea. The
general form of a balance law on such a surface is (Fig. 2)

d
oy &% da = - *h,d
drdi’.]w{ ) a q?,:‘ﬁ s

(3.1)

— [ [#*+v,(* — W] ey da

aft)

+ I{n,+cr‘,)da. |
a(t)

-Cls)

e

a
td hy

wk
/ A1t

[ﬁ“-@,lvk-w"ﬂq

Fig. 2: Flux contributions at a non-material singular surface.

Here s denotes the arc length along % (s); its orientation is counterclockwise
around the surface normal e,. This curve is chosen to be material in the sense that
it possesses the same tangential velocity w* as do material particles sitting in-
stantaneously on the surface. The singular surface is a whole, however, is non-
material; because matter may cross it when it represents a phase boundary.
Moreover, da is the area element on 4(f), and d/dt denotes total time derivative
following the advective velocity w*. The field quantities have the meaning:

v, (&%, 1) = surface density of an additive quantity ¥ per unit area on a(t).

¢3(£*, 1) = influx of ¥ along the tangent planes of 4(7) per unit time and unit
length through the bounding curve % (s) moving with velocity w*.
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= surface production and supply densities of ¥ per unit time and unit
area of 4(¢), respectively.

Trd! Crd

¢*(x, ) = bulk influx of ¥ per unit time and unit area through a material sur-
face in the bulk moving with material velocity .

1p,(x, 1) = bulk density of ¥ per unit volume of the bulk material.

n‘f?k + ‘P::(Uk == Wi)}] By == [ﬁi’t Fyy [”k+ —w)] e — [43"‘— 1P, (Uk— —wh] & =
= normal jump contribution of the bulk flux of ¥ per unit time and unit
area through s (7). It represents the influx to 4(f) from the adjacent
bulk materials. ¢* , [, v% are the limiting values of the bulk fields as
the singular surface a(¢) is approached from R, and R _, respectively.

The jump contribution in (3.1) is derivable from the general balance equation for
the bulk material. Our aim is the deduction of a local version of (3.1) when
sufficient differentiability assumptions are satisfied. To this end, we first inter-
changein (3.1) the time derivative and the integration. This1s done with the aid of
the transport theorem (2.19). Second the divergence theorem is invoked on the
surface integral term. This process yields

dyp, .
_r a} "EW4KM}vn+(¢'a+wdwﬁj;u+

s(1)

- (3.2)
+ [¢* + w, (" —w)] e — (n, + a,)} da=0,

a relation that must hold for every non-material singular surface. Consequently,

dy,
¥

5

- 2Wd Kﬂ{wn + (¢: -+ tpﬂ WJ);& == f= IIQS’" .‘i IPD(U'“ ok lI'4’H“}-‘|:| EM + ﬁd + ﬂ-ﬂ = (33)

This is the local form of a balance equation for any additive quantity y defined on
a moving non-material singular surface.

[T. Alts, K. Hutter. Continuum Description of the Dynamics and Thermodyna-
mics of Phase Boundaries Between Ice and Water. J.Non-Equilib. Thermodyn.]:
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and velocity fluctuations. These expressions are given in the general case
of a nonplanar equilibrium shape of the interface. Some recent work by
Bedeaux and Weeks'? on the behavior of the density—density correlation
function and the direct correlation function in the neighborhood of the
interface is discussed. For the density—density correlation function, their
expressions are generalized to the case of finite bulk compressibilities.

In Section VI the description is extended by the inclusion of random
fluxes. Fluctuation—dissipation theorems for these random fluxes are
given.'!

The general method of nonequilibrium thermodynamics is, as we shall
discuss in more detail, inherently limited to the description of time-
dependent phenomena over distances large compared with the bulk
correlation length. We shall therefore not discuss the behavior near and
in the surface of discontinuity on a molecular level. The reader is instead
referred to the extensive literature on this subject.**

B. On the Mathematical Description of Interfaces

We consider here dynamical processes of a system in which two phases
coexist. The phases are separated by a moving surface of discontinuity, or
interface as we shall often call it, with a time-dependent curvature. The
term “surface of discontinuity” does not imply that the discontinuity is
sharp, nor that it distinguishes any surface with mathematical precision.’
It is taken to denote the nonhomogeneous film that separates the two
bulk phases. The width of this film is on the order of the bulk correlation
length.

In the mathematical description of the dynamical properties of the
system, we want to choose a method such that details of the description
on length scales smaller than the bulk correlation length do not play
a role. In the bulk phases, this implies that one replaces, for example, the
molecular density by a continuous field that is obtained after averaging
over cells with a diameter of the order of the bulk correlation length.
Such a procedure gives an adequate description of the behavior of a bulk
phase on a distance scale large compared with the bulk correlation length
if the variation of the fields over a bulk correlation length is small. The
surface of discontinuity is, in this context, a two-dimensional layer of cells
in which the variables change rapidly in one direction over a distance of
the order of a bulk correlation length from the value in one phase to the
value in the other phase, but change slowly in the other two directions.
One now chooses a time-dependent dividing surface in this two-
dimensional layer of cells such that the radii of curvature are large
compared with the bulk correlation length. Surfaces of discontinuity for

YYL Jliall 1viUlil U L ULLIUW,

To describe the time-dependent location of the dividing surface, it is
convenient to use a set of time-dependent orthogonal curvilinear coordi-
nates:® &(r, t), i =1, 2, 3, where r = (x, y, z) are the Cartesian coordinates
and t the time. These curvilinear coordinates are choosen in such a way
that the location of the dividing surface at time t is given by

&(@ t)=0 (12.1)

The dynamical properties of the system are described using balance
equations. Consider as an example the balance equation for a variable
da, t): :

%anwmw&@n=%mo 1.2.2)

where J; is the current of d and o, the production of d in the system. In
our description d, J; and o, vary continuously in the bulk regions while
the total excess (to be defined precisely below) of d, J,, and o, near the
surface of discontinuity is located as a singularity at the dividing surface.
We thus write d, J;, and o, in the following form:

d, )=d(r, )O (r, )+ d°@x, )&, )+ d™(x, )O*(x, 1) (1.2.3)

Ji(x, t)=JF4(r, )O(x, t) + J3(x, 1)8°(x, 1)
+¥(r, )07 (r, 1) : (1.2.4)

ay(x, t)= o3, )0 (r, ) + a(r, 1)3°(x, 1)
+oi, )0, t) (1.2.5)
Here ® and O are the time-dependent characteristic functions of the
two bulk phases, which are 1 in one phase and zero in the other. Using

the time-dependent curvilinear coordinates, one may write these charac-
teristic functions as

O*(r, 1)=0(x&,(r, 1) (1.2.6)

[D. Bedeaux. Nonequilibrium Thermodynamics and Statistical
Physics of Surfaces. Advance in Chemical Physics Vol. LXIV, Wiley 1986]
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Using this velocity field, one may show® that the time derivative of the
characteristic functions for the bulk phases is given by '

3
5;@*(1', t)=Fwio'Q, 1) (1.2.15)

where the subscript n indicates the normal component. Similarly, one may
show® that the time derivative of the characteristic function for the
surface of discontinuity is given by

% 8, )=—win-Vé@, 1) (1.2.16)

where V =(9/3x, 8/0y, 8/8z) is the Cartesian gradient. One may also show
that the gradient of &% is normal to the dividing surface:®

V&8s, t)=nn- V&%(r, t) 1.2.17)

These formulas make it possible to analyze the balance equation for d
in more detail. In particular, we are interested in the precise form of the
balance equation for the excess density d°. Substitution of the expressions
(1.2.3)~(1.2.5) for d, 34, and o, into the general balance equation (1.2.2)
and use of the definitions and identities (1.2.6)—(1.2.17) leads to the
following more detailed formula for the balance of d:

[% d (@, ) +divIz @, t)— o, t)]@)_(r, t)

+ [% a*, t)+divI@, ) — o, t)] 0@, 1)

d
+ [é; 45, 1) +div F(r, ) — oS, 1)

+ T i, )= J a0, ) — wi, )(d™(r, t)—d(r, t))]Ss(r, t)
+ [T, O—wir, )d@, Oin(r, 1) - V&, 1) =0 (1.2.18)

The first two terms in this formula describe the balance in the bulk

54 D. BEDEAUX

phases:

% d*+div¥i=a} for +&,(@, t)>0 (1.2.19)

The third term in formula (1.2.18) describes the balance of the excess
density:

%dwdiv BT, —wid_=ay for £(r0=0 (1.220)

where the subscript — indicates the difference of the corresponding
quantity in the bulk phases from one side of the surface of discontinuity
to the other; thus

d_(l', t) = d+(§1 = 03 §2(r1 t)’ 53(1,, t)a t) - d4(§1 = 01 §2(ra t)v §3(r’ t)’ t)
(1.2.21)

and similarly for J,, _. We do not follow the more conventional notation,
which uses square brackets to indicate this difference.’®'” The balance
equation (1.2.20) for the excess density shows that in addition to the
usual contribution occurring also in the balance equation (1.2.19) for the
bulk phases, one has a contribution J,, _, due to flow from the bulk
regions into or away from the surface of discontinity and a contribution
—wid_ due to the fact that the moving surface of discontinuity “scoops
up”’ material on one side and leaves material behind on the other side.
The last term in formula (1.2.18) gives

S

A WidE=0 (1.2.22)

This condition expresses the fact that the excess current in a reference
frame moving with the surface of discontinuity flows along the
dividing surface. Although the validity of this condition is intuitively
clear, the above derivation shows that it is also a necessary condition in
the context of the above description.

We will now briefly discuss how one may obtain the excess densities
and currents from a more detailed description. Crucial to this procedure
is the fact that, as we have already elaborated, we are interested only in
the temperal behavior of spatial variations over distances long compared
with the bulk correlation length. Spatial variations over distances smaller

[D. Bedeaux. Nonequilibrium Thermodynamicy it e Pt Rea R ieaton longth are assumed to be in

n given in the context of non-equilibrium

Physics of Surfaces. Advance in Chemical Physics Vol. LXIV, Wiley 1986]
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Example 5 :

We consider two fluids (e.g. water and oil) with surface tension

(0™ pa) + div(g™vpg.) =0 for m = 1,2

v continuous at I

() @"vmg.) +div(Y (¢"v@v + N™pe. + Mur) = fpg.

o( ) e pa. +eur) +div() (™o + (M) v+ ¢"pg. + (M) opr) = ) vef"uq.

m m

0 continuous at I, i.e. ni(ot,el) = n2(0% €2)

It is the purpose to determine €% and [1°. Here we assume for the two fluids
that the standard entropy principle holds for m = 1,2
1 1 1
o= 0om™" + div(nmv + Eqm) = EDvoSm + V(E)oqm >0 in Q™
and quantities for the two fluids are given as above.

The more general entropy principle for the system is

1
=0 Y n e+ 0'ur) +div( Y (0" + a" e + (10 + ¢ )pr) 2 0

m

Exploitation of the entropy principle:

H.W. Alt TU Munchen 29. Nov. 2012 24



For the distributional entropy principle

| 1
S =0 Y n"pon +n'pr) +div(d (nMv + 50" )b + (10 + ¢"pr) > 0

m

we compute
> = Zamugm + o’ur >0 (o™ as above)

which is eqnﬁvalent tooc™>0in Q™ and o >0 in . It is (since (v — vr)er = 0)
o =0 n° +divi (n°v+ ¢°) — Z 1qmomm , Z lqmwszm = %Z q" vy
Z q"evgn = 0] e° + div' (e*v —|— M%) — ve Z anQm (energy)
Z N"vo. = divi M° (momentum)
Z q"evon = 8{65 + div (e%0) 4+ D" vell?

m
and therefore

1 1
o’ = 8{778 + divh (n°v 4 ¢°) — 5(6trss + divr(esv)) — ED'—U.I_IS (v = or + futan)

1
=7’ — 2+ diVg" (T=0] +veV' =0 +vreV 4 veV' =0 + veV)

—I—Drvo((nS — %55)(Id —vQU) — %I’IS)
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For the entropy principle > > 0 it remains ¢ > 0 with

] 1. : 1 1
o’ =n° — 558 4+ divi ¢* + Drvo((ns - 588)(1(1 —VvQU) — EI_IS)

Result : The entropy principle is satisfied, if ¢° = 0 and

MN° = —vy(Id —v®v) —5°, ~y=¢°—-06n°
R 1
n° =n°(e”), nis= i e® = £°(0)
and if the above properties for the fluids are satisfied.
The remaining inequality on the surface is

1
o° = gDrvoSS >0 (for example, if S5 = 0)

Mathematical literature for the isothermal case:
[I.V. Denisova. Solvability in weighted Holder spaces for a problem governing the

_evolution of two compressible fluids. Zap. Nauchn. Sem. 295, pp. 57-89 (2003)]
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