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e The continuum definition
e Measurement of surface tension
e Discrete approximation

e What does molecular dynamics say ?
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Surface Tension

“Surface tension preventing a paper clip from submerging”
“Water striders stay atop the liquid because of surface tension”

[en.m.wikipedia.org/wiki/Surface_Tension]
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Definition of Surface Tension

[ surface tension tensor on the surface I 5 :
27 = Medium 2

QL Q2 two o :
' pen se_ts Q! = Medium 1
1™ pressure tensor in 2™ X
Mass and momentum equation (simplest case): ' = Interface

( 8t(gmp,9m) + div(gmep,Qm) =0 form=1,2in 2(R xR")
3t(ZQOUMQm> + diV(Zm(QmU@W + M")pg. + I_|8Mr) = > o f"ug. in /(R x R")

Vian CONtinuous on [ (for two fluids)

/\

\

( Q™ c R x R® (3-dimensional)
(C, py ) = //C(t,x)dHM(x) dt, X (M-dimensional) = )
I C R x R® (2-dimensional)

R T,
([ 0;0™ +div(p"™v) =0 in Q" form=1,2
O(0mv) + div(emv®v 4+ N") ="  in Q" form=1,2

~—

v continuous on [ (for two fluids) and on I

| div(MPpr) = four, f:=> Mg =MN'-N)v, vi=vg = —v

The generalized Laplace law is

M°v = 0 for normal v

divine =f = (Nt —N?)w
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Definition of Surface Tension

[1° surface tension tensor on the surface I

~ surface tension
( M°r =20

M = —~v(Id —ver) == <( divil®=-V"y+~divi (ver)

| (diVi v)y = —krevv = —kr
The Laplace law is therefore
divinf=M'—nN?)y «— Viy+ysr+ M -N?Hr=0
— ~rrov+ve(Nt =Ny =0, v+ re(NP —=MN?)r =0 for Ter =0

Consequence: All classical statements about fluid flow with surface will follow.
If Mt = pId — S and 2 is occupied by air (p°> =0, M? = 0), if vy = const:

Y Krev + p = veSv

1 K QtQ = Air
If no flow (v =0 hence S = 0): If v is positive $2; = S = Water
and sr points inside the water, then the water pressure is positive. vV =ro

If flow is incompressible (o' = go), inviscid (S = 0), stationary, and irrotational,
Bernoulli's equation is besides divv = 0 that

%M? + p — 00 = const, fl = ooVeo (e.9. ¢ = —cx3)
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Liquid drops
Sessile drops - : 2 -
=
¥ '_5_
"7

[Wikipedia]

Corollary 3.1. Corresponding to any value of the parameter u,, there is ex-
actly one sessile drop making boundary angle vy, for any yin 0<y<m.
[R. Finn. Equilibrium Capillary Surfaces
Grundlehren der mathematischen Wissenschaften 284, Springer 1986]
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Liquid drops

Pendent drops

[Wikipedia]

Locale existence:

Theorem 4.1. For any prescribed u,<0, there exists R,= R(u,), such that
a solution u(r;u,) of (4.2) exists in 0<r<R,, with lim,_  u(r; ug)=u,.

[R. Finn. Equilibrium Capillary Surfaces

Grundlehren der mathematischen Wissenschaften 284, Springer 1986]
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[de.m.wikipedia.org/wiki/Tropfen]
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Measurement of Surface Tension

Hauid * Temperature °C + Surface tenslon. ¢ Syrface tension of various liquids
Acetic acid 20 27.60| Lo
Acetic acid (40.1%) + Water 30 40.68 In dyn /Cm (<1;> mi I I I neWton / meter)
Acetic acid (10.0%) + Water 30 sas6 against air
Acetone 20 23.70
Diethyl ether 20 17.00
Ethanol 20 22.27
Ethanol (40%) + Water 25 29.63
Ethanol (11.1%) + Water 25 46.03
Glycerol 20 63.00
n-Hexane 20 18.40
Hydrochloric acid 17.7M agueous solution 20 65.95
Isopropanol 20 21.70
Liquid helium II -273 [2410.37
Liquid nitrogen -196 8.85
Mercury 15 487.00
Methanol 20 22.60
n-Octane 20 21.80
Sodium chloride 6.0M aqueous solution 20 82.55
Sucrose (55%) + water 20 76.45
Water 0 75.64
Water 25 71.97
Water 50 67.91
Water 100 58.85
Toluene 25 27.73

[en.m.wikipedia.org/wiki/Surface_Tension] |
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Methods of measurement [edit]

Because surface tension manifests itself in various effects, it offers a
number of paths to its measurement. Which method is optimal
depends upon the nature of the liquid being measured, the
conditions under which its tension is to be measured, and the stability
of its surface when it is deformed.

« Du Noldy Ring method: The traditional method used to measure
surface or interfacial tension. Wetting properties of the surface or
interface have little influence on this measuring technique.
Maximum pull exerted on the ring by the surface is measured.[10]

« Du Noliy-Padday method: A minimized version of Du Noly method i
uses a small diameter metal needle instead of a ring, in Surface tension can be measured using the &
combination with a high sensitivity microbalance to record e R e e
maximum pull. The advantage of this method is that very small
sample volumes (down to few tens of microliters) can be measured with very high precision, without the need to
correct for buoyancy (for a needle or rather, rod, with proper geometry). Further, the measurement can be
performed very quickly, minimally in about 20 seconds. First commercial multichannel tensiometers [CMCeeker]
were recently built based on this principle.

+ Wilhelmy plate method: A universal method especially suited to check surface tension over long time intervals.
A vertical plate of known perimeter is attached to a balance, and the force due to wetting is measured.!11]

+ Spinning drop method: This technique is ideal for measuring low interfacial tensions. The diameter of a drop
within a heavy phase is measured while both are rotated.

+ Pendant drop method: Surface and interfacial tension can be measured by this technique, even at elevated
temperatures and pressures. Geometry of a drop is analyzed optically. For details, see Drop.[11]

+ Bubble pressure method {Jaeger's method): A measurement technique for determining surface tension at short
surface ages. Maximum pressure of each bubble is measured.

+ Drop volume method: A method for determining interfacial tension as a function of interface age. Liquid of one
density is pumped into a second liquid of a different density and time between drops produced is measured.[12]

+ Capillary rise method: The end of a capillary is immersed into the solution. The height at which the solution
reaches inside the capillary is related to the surface tension by the equation discussed below.[13]

+ Stalagmometric method: A method of weighting and reading a drop of liguid.

+ Sessile drop method: A method for determining surface tension and density by placing a drop on a substrate
and measuring the contact angle (see Sessile drop technique).[14]

« Vibrational frequency of levitated drops: The natural frequency of vibrational oscillations of magnetically
levitated drops has been used to measure the surface tension of superfluid “He. This value is estimated to be
0.375 dyn/cm at T = 0 K.115]

+ Resonant oscillations of spherical and hemispherical liquid drop: The technique is based on measuring the
resonant frequency of spherical and hemispherical pendant droplets driven in oscillations by a modulated
electric field. The surface tension and viscosity can be evaluated from the obtained resonant curves.[1611171[18]
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Molecular Dynamics

Consider particle system (without external force): For «

majioz(t) — _Zg;g;saFa,B(t) ) Fa,ﬂ(t) — vva,ﬂ(xa(t) - xﬁ(t))

Vi.a(2) = Vo g(—2)
e.g. Lennard-Jones potential

This ODE-system is equivalent to a distributional mass-momentum system.

Define for curves t — z(t), t — y(t)

1
<<,um>:=/<<t,x(t))dt, <c,ux,y>:=//<<t,<1—s>x<t>+sy<t>>dsdt
R O

R
Mass-momentum-energy conservation:

0r(amatss, ) + div (3, matat,, ) = 0

: . : : 1
Oy <Zamaxap,%) 4+ div (Zamaa:a®a:auxa — Eza,ﬁFa,ﬁ(g(xa — xﬁ)l‘xa,xﬁ> =0

O (Zafaﬂ'ma) + div (Zafozx.aﬂ'ma - %Za,ﬁFa,ﬁ‘(dfoz + d:g)(a:a - xﬁ)l‘xa,xﬁ> =0

: Ma, . 1
with f, = 70\53&|2 + EZﬂ:B#aVO"B(a}O‘ — x3)

[H.W. Alt. Entropy principle and interfaces. Fluids and Solids. Section 7.
AMSA Vol. 19, pp. 585-663, 2009]
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Molecular Dynamics

Proof: For test functions n € C(R x R3;R) and ¢ € CP(R x R3; R3)

< —0m, maopb, > +< -V, mad?all'a: >
/ 0 (Ot 50 (8)) + 50 (£)0Vn(t, 2a(t)) d / M (0t 7a(1)))

< —&;C, Zamaibaﬂxa > + < —DC, Zamax.a(gx'aﬂxa - EzaﬁFa,B@)(xa - xﬁ)“wa,xg >

—_ / zakma%(cku, za(t)))dan(t) dt + % (B¢, TasFup®(@a = Toba e, )
R

= /Zakck(t’ xa(t))maiak(t) dt
1

R

5 [ s [ DU = 9250 + s2a()s (Fas(®)8(alt) = 2(1))) ds it
R 0

= Zaﬁ(g(t, xa (1)) — C(¢, xﬁ(t)))oF;,rﬁ(t) dt = zzaﬁg(t, zo(t)eF, s(t) dt
_ / 5ot za(®))e (maita(t) + SyFas(t)) =0

[H.W. Alt. Entropy principle and interfaces. Fluids and Solids. Section 7.
AMSA Vol. 19, pp. 585-663, 2009]
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Mass and momentum laws

For molecular dyamics:
0r(amatts, ) + AV (S madats,, ) = 0
: . : . 1
Oy (Zamaa:ap,%) + div (Zamaaza@)xau% - EzaﬁFa,g@)(:ﬁa — xﬁ)ﬂxa,xﬁ) =0

If V,5(z) = Vags(r), r = |z|, the pressure tensor is symmetric:
1 OV,p

Ta,3 OT

Faaﬂ - WO&,,@ ) (xa o :'U/B) ) Waug = (ra,ﬂ) Y TOZ,,B = |xa - xﬂ'

For continuum physics:
d:(ong) + div(ovpg) =0
O (ovpg) + div(ev@vpg + Mpg + N°pr) =0

where the surface tension tensor is M* = —y(Id — v®v).

Hence we compare

- . 1
I—Imolecular — Zamasz@xaﬂ‘xa — EZQ,BWQ,B . (xa - xﬁ)@(xa - wﬁ)”’xa,xg

neontimm = ou@upg + Mpg — Y(Id — v@V)pr

in the equilibrium case.
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Numerical results

1D cross section: rho

Results with 19683 molecules

rho ——
H : . . L2y approx
Cross section in zi-direction through O: )
e Density (characteristic function)
. . . 08 |
e Distribution of pv and
e nondiagonal elements of N o0
with respect to a mollifier 0.4t
02
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O s B e
[H.W.Alt 2014] 02 . . . .
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Numerical results

1D cross section: diag pi

Results with 19683 molecules

YOu see cross section

e in xp-direction (right side)
e in xo-direction (below left)
e in x3-direction (below right)
The diagonal elements of I
and characteristic function

w.r.t. a mollifier
[H.W.AIt 2014]

1D cross section: diag pi

a ' ' ' pilo0] —— |
PILLI1] ——
_pir2][2]

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1D cross section: diag pi

al ' ' ' pilol0] —— |
pIlLI[1] ——0
L pil212]

0 0.2 0.4 0.6 0.8 1
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Distributed Surface Tension

In the equilibrium case (v = 0, stationary) the equation to solve is
diviil=0 with e 2'(RxR3)

Example: (with surface tension)

N = pldpo — ~v(Id — vV pr where v normal of I

It is M = MNug + M with N = pld and N* = —~v(Id — v®V)

Example: Let r — p(r) be smooth, r = |z|. Then (M = Mug,ps)
T

M .= pld + "“Z;'r (Id — v®v) where v 1= —
-

is a “distributed surface tension’” solution.

Proof:
1) Take a discrete version of surface tension in QF, 9QF = r*~tuyurk, for each k

0O = div (Zk(kad)ﬂQk — Zk"/k(]:d — l/k®l/k) [l.rk)

and go to the limit k£ — oo.
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Distributed Surface Tension

2) Direct computation in Euclidean coordinates. If

~ () a:% -+ :I;% — 1T —T123
MN—pld = —~(r)(Id —v®Vv) = — —x1T2 I+ T3 —T2T3
r —x113 —XToT3 a:% -+ a:%

we compute V(W(T)) =( (T)),r Vr = ( (T)> — and

r2 r2 r2 )y

() 1 zc% —I—x% —T1T2 —x113 T1
div(l‘l—pId):—(y ) [ ] [ ]

) = —X1I2 33% + x% —Xox3 o
r rr L —zix3 —Tox3 x% —|—a:% r3 |
=0
’y(’l") dIV(£U2 —|—ac3, :1315132, $1m3) 2,}/(74) 2,}/(,’“)
—— div(— xlxg,azl -I—:c3, x2x3) > v
r div(— m1x3,—3325173,371 +x2) " "
Therefore
2 2
0=divil = div(pld) + 227, = ( W (r) 4 7(r))
N——
= Vp
R
_rpn(r) S L ,
y(r) = — 5 (which is an approximation of Laplace’ formula)
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Distributed Surface Tension

Theorem. If a sequence of distributed surface tension solutions p* satisfies
p* — pAr«p for k — oo with p = const and D = By (0) then

Ak . k ’rp]ffr . L . xXr
N .= (p"Id + 5 (Id —vRv) |pupyp3s Wwith v i=e, = "
1 : Rplrxop

—  Mi=pldpugyp —v(Id —vQV)purxpgp  With vy =

pointwise in the space of distributions. (Laplace law)

Proof: For test functions ¢ € CSO(R3; R3%3)

/g.(rp’f;(ld —v@v))dL® = /nrp’f’rdL3 (if = te(ld — 1/®1/))
Rs3 Rs3

= /nreronk’dL3 = —/pkdiv(nrer)dL3 — — / pdiv(nre,) dL3

R3 R3 Bx(0)
= _ . dH? -o Vp dL>
/ pnT €reuUR (o) + / nre,e Vp
OB R(0) =1 Bx(0) =0
= / go( — pR(Id — 1/®V)) dH?
9Br(0)
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Numerical and theoretical results

1D cross section: diag pi

Results with 19683 molecules

YOu see Ccross section

e in xp-direction (right side)

e in xo-direction (below left)

e in x3-direction (below right)

and a corresponding approximation
of a continuum solution

w.r.t. a mollifier
[H.W.AIt 2014]

0 0.2 0.4 0.6 0.8 1

1D cross section: diag pi 1D cross section: diag pi

pI[0J[0] —— .
4 L pILIN1] —s— | 4| 3] J—
pif212] —+— pil2112] —+—

pI[0][0]

0 0.2 0.4 0.6

0.8 1 0 0.2

0.4 0.6

0.8
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Numerical and theoretical results

Continuum solution as approximation

e w.r.t. a mollifier (black)

e the pressure p (blue) i

e the approximative surface tension (red) |

o p=po+pir? + por® — par® — per'? °
po = 3, p1 = 8, p> = 10, p3 = 600, 1t
p(R) =0, R=1. 2|

[H.W.AIt 2014] .

1D cross section: pi continuous

p-gamma

From the theoretical result

k
Nk = ( Fld 4 - T(Id —~ V®V)>“RxR3

~

— = pldpg,g,0) — 7(Id = vOV)UR 5B - (0)

R plp. 8.0

Laplace law
5 (Lap )

with v =

H.W. Alt
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Conclusion

e On a micro-scale one has to switch to distributed surface tension.

e On a large scale the effect of surface tension indeed takes place
on the boundary.

e The method of comparing molecular dynamics and conservation laws
is applicable in general.

e The method generalizes for example to membranes
(concurrence of two interfaces).
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