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Abstract. We study the convergence of diffusive interface models to sharp interface mod-
els. These diffusive phase field models consist of the conservation of mass and momentum,
where the mass undergoes a phase transition. The model is based on a free energy and
scaled by a small parameter δ>0 representing the thickness of the interface. For diffu-
sive models a fundamental property is the free energy inequality. Since we consider the
isothermal case, this inequality is equivalent to the well known entropy principle.

We go to the limit with this inequality depending on the scaling limit we consider.
This contains cases where the entropy principle in the limit is not a standard situation.
Since there is no physical constraint for the sequence approximating such limit, we are
legitimized to consider the limit entropy principle, whatever it is, as a suitable inequality.
Therefore we insist that this modified entropy principle is the appropriate choice.

The paper complements the results in [4]. All models deal with compressible fluids.
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1 Introduction

This paper deals with the limit of certain phase field approximations to problems with
sharp interface. For the approximations a free energy inequality is satisfied and we go
to the limit with this inequality. The model equations contain mass and momentum
conservation. We use the notion of distributions to formulate this limit, and also the
convergence is formulated in the sense of distributions.

We concentrate in this paper on examples, where the free energy is scaled by 1
δ
, see (2.1)

and (1.4). Here δ is the parameter, which describes the thickness of the interface. The 1
δ
-

scaling will have consequences for the appearance of curvature in the sharp interface limit,
and it has consequences for the role of the viscosity in the formula for the surface tension.
It was the achievement in the papers [17] and [18] to see this connection. An approach
with the incompressible Navier-Stokes equation can be found in [1]. We mention that the
first paper with a 1

δ
-scaling of the free energy was [14], where the stationary problem

was considered and the limit δ→0 for the free energy functional was treated from the
mathematical point of view.

In connection with the incompressible Navier-Stokes system a variety of papers deals
with phase field models of Cahn-Hilliard type, see [12], [13], [1], [16], [8]. We consider a
compressible Navier-Stokes system combined also with the Allen-Cahn equation, a system
which has been considered in [17] and [18]. There it has been shown that such system is
equivalent to the mass equation for two fluids with mass densities ϱ1

δ and ϱ2
δ combined

with the momentum equation for the total mass ϱδ=ϱ1
δ +ϱ2

δ of this mixture,

∂tϱ
1
δ +div(ϱ1

δvδ +Jδ)=τττ δ ,

∂tϱ
2
δ +div(ϱ2

δvδ−Jδ)=−τττ δ ,

∂t(ϱδvδ)+div(ϱδvδ⊗vδ + Πδ)=fδ ,

(1.1)

where τττ δ is a reaction rate, Jδ a mass flux, and fδ a force acting on the fluid. The tensor
Πδ contains pressures and stress tensor. Here and in the entire paper all mass densities
are positive. We also account for a Cahn-Hilliard type equation if Jδ ̸=0, whereas τττ δ ̸=0 is
the Allen-Cahn case. On the interface there is a mass exchange between ϱ1

δ and ϱ2
δ with a

rate τττ δ−divJδ. If we define

φ:=
ϱ2

δ

ϱδ

, 1−φ=
ϱ1

δ

ϱδ

, ϱδ=ϱ1
δ +ϱ2

δ , (1.2)

then the first two equations in (1.1) are equivalent to the mass conservation of the total
mass ϱδ and an Allen-Cahn, resp. a Cahn-Hilliard equation for the mass fraction φ,

∂tϱδ +div(ϱδvδ)=0 ,

ϱδ(∂tφ+vδ•∇φ)=divJδ−τττ δ ,

∂t(ϱδvδ)+div(ϱδvδ⊗vδ + Πδ)=fδ .

(1.3)

Here one has to add constitutive equations for Πδ and τττ δ resp. Jδ, which have to satisfy
the free energy inequality, which is the entropy principle in the isothermal situation. As
mentioned above the total mass ϱδ is conserved, since the Jδ-terms and the τττ δ-terms
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have different signs in the single mass equations. Therefore these terms don’t arise in the
momentum equation (see [2, Section 8] and [3, Section 3]). For details see section 2, where
we also state the constitutive equations for the internal free energy

fδ :=
1

δ
ϱδW (φ)+δh(ϱδ)

∣∣∇φ
∣∣2

2
+ U(ϱδ,φ), (1.4)

which is the same in all examples 2.5, 2.6, 2.7, and 2.8, that is in all examples we use such
a free energy and we assume that a mass transition occurs on the interface, that is, it is
a general assumption in this paper that

m0 ̸≡0 on Γ , (1.5)

a definition of m0 one finds in (4.6). There is another case where the two media do not
interact at the free boundary (m0=0), a case which we do not consider in this paper. Here
we treat the case of a phase change, that is generically m0 is nonzero and accidentally
there might be points at which it is zero. Also we assume that all arising mass densities
are positive, see (4.2) and (4.4).

It is the common knowledge that models for concrete materials satisfy the basic con-
servation laws (1.1), that is the mass-momentum system, and the free energy inequality.
This is the isothermal version of the entropy principle. As stated in 2.1 this principle
consists of a single inequality. It is the purpose of this paper to go with the free energy
inequality to the limit δ→0, and this way we will arrive at free energy inequalities for the
sharp interface problems.

To make this procedure transparent, we work with distributions (see [2] for a math-
ematical and [5] for a physical introduction to the problems considered here). We think
that this is the adequate formulation for the convergence procedure and also for the final
physical equations. In section 4 we summarize these limit equations. For the examples 2.5
and 2.6 this already has been shown in [4], and for example 2.7 we refer to the appendix
10, and for example 2.8 to appendix 11.

In this paper all phase-field models satisfy the free energy inequality (see 2.1 for the
definition and 2.2 for the result), which is a special case of the distributional version

∂tF +divΦ−G0≤0 (1.6)

in D′(U), where F is the distributional free energy and Φ the distributional free energy
flux. The term G0 is such that the left hand side of the inequality is an objective scalar.

If now (Fk,Φk) and G0k are such distributions, that is (1.6) for k∈N holds, which is
∂tFk +divΦk−G0k≤0, and these distributions converge to F , that is Fk→F pointwise
in D′(U), and similarly Φk→Φ, G0k→G0, then obviously ∂tF +divΦ−G0≤0, that is the
free energy inequality (1.6) is satisfied for the limit objects. Also if εkFk→F , εkΦk→Φ,
εkG0k→G0, where εk are positive constants, we arrive at the inequality ∂tF +divΦ−G0≤
0. We only have to multiply the k-version of the inequality by the positive number εk.

Here we consider δ as index for a sequence, where δ describes the interface thickness.
We show in sections 6, 7, 8, 9, that the terms of the free energy inequality converge for
δ→0, see the theorems 7.1 and 7.4 for example 2.5, theorem 6.2 for example 2.6, theorem
8.1 for example 2.7, and theorem 9.1 for example 2.8. These convergencies give rise to
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define the limit of the free energy inequality. In the examples 2.6 and 2.7 it is an equation
(1.6) in the entire domain, whereas for example 2.5 one has to multiply the free energy
inequality by 1

δ
to obtain the free energy inequality in a neighbourhood of the surface Γ

and one obtains the usual limit for the normalized free energy in the bulks Uα, see 7.5.
Therefore our considerations give a definition of the free energy inequality in the limit

case, and this definition is consistent with the free energy inequality in the diffuse case.
The paper is organized as follows:

• The phase-field models (Section 2)

• Limit equations (Section 4)

• Equipartition of energy (Section 5)

• Jump in the density (Example 2.5, see Section 7)

• Allen-Cahn continuous case (Example 2.6, see Section 6)

• Cahn-Hilliard example (Example 2.7, see Section 8)

• Cahn-Hilliard example with degenerate mobility
(Example 2.8, see Section 9)

The last four sections contain the free energy inequalities in the limit. For the Cahn-
Hilliard cases the limit equations (see 4.9 and 4.11) are proved in the appendix (section
10 and 11). For the other cases the proofs are contained in [17] and [18]. Our convergence
results do not contain estimates of the remainder terms.

2 Phase field models

We consider phase field models which are given by system (1.1) which is equivalent to
(1.3). For the mass transitions τττ δ and Jδ and for the momentum matrix Πδ we have spe-
cial constitutive equations which are motivated by concrete materials. These constitutive
relations are given by a free energy density, which is assumed to be a function of the
densities (ϱ1

δ ,ϱ
2
δ), or equivalently (ϱδ,φ), and the derivative ∇φ of the mass fraction φ,

that is, the total free energy is

f tot
δ =fδ(ϱδ,φ,∇φ)+

ϱδ

2
|vδ|2 . (2.1)

Connected to the internal free energy fδ is the chemical potential µδ given by

µδ :=
δfδ

δφ
=fδ ′φ−divfδ ′∇φ , (2.2)

which is defined with respect to the mass fraction φ. The free energy is subject to the
main principle. This consists in the following free energy inequality, which is the entropy
principle in the isothermal case.

2.1 Postulate of the free energy inequality. With the total free energy f tot
δ as in

(2.1) and a total free energy flux Φtot
δ we postulate the free energy inequality

gδ :=∂tf
tot
δ +divΦtot

δ −vδ•fδ≤0 (2.3)
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for solutions of system (1.1) or the equivalent system (1.3), that is, the free energy pro-
duction gδ is nonpositive.

Since gδ≤0 for all observers, it follows that gδ has to be an objective scalar. We mention
that this postulate has consequences for the system. The representation of Πδ, see (2.5),
which has as part the pressure tensor Pδ and the stress tensor Sδ, is forced by the energy
inequality. And, of course, there is the residual inequality for gδ, see (2.6).

2.2 Theorem. For the free energy flux we assume

Φtot
δ =f tot

δ vδ +Πδ
Tvδ− φ̇fδ ′∇φ−

µδ

ϱδ

Jδ . (2.4)

Then the postulate for solutions of system (1.1) is satisfied, if

Πδ =Pδ−Sδ ,

Pδ =pfδ
I+∇φ⊗fδ ′∇φ

=pfδ
(ϱδ,φ,∇φ)I+∇φ⊗fδ ′∇φ(ϱδ,φ,∇φ),

(2.5)

and if the right-hand side of (2.6) is nonpositive, that is the residual inequality

gδ=−Dvδ:Sδ−∇
(µδ

ϱδ

)
•Jδ−

µδ

ϱδ

·τττ δ≤0 (2.6)

is satisfied.

Here ξ̇ :=(∂t +vδ•∇)ξ for any function ξ. If ξ is an objective scalar also ξ̇ is. Also

pξ(ϱ):=ϱξ′ϱ(ϱ)−ξ(ϱ),

eξ(ϱ):=ϱξ′ϱ(ϱ)+ξ(ϱ)
(2.7)

for any function ϱ 7→ξ(ϱ) and similar for functions also depending in addition on other
arguments.

Proof. This has been shown in the appendix of [17]. We repeat the proof here. Denoting
the kinetic free energy by

fkin
δ =

ϱδ

2
|vδ|2 (2.8)

a simple but lengthy computation shows for solutions of (1.1)

∂tf
kin
δ +div(fkin

δ vδ +Πδ
Tvδ)−vδ•fδ=Dvδ:Πδ ,

therefore we obtain for arbitrary flux Φtot
δ =f tot

δ vδ +Φδ

gδ :=∂tf
tot
δ +divΦtot

δ −vδ•fδ

=∂tf
kin
δ +div(fkin

δ vδ +Φδ)−vδ•fδ +∂tfδ +div(fδvδ)

=div(Φδ−Πδ
Tvδ)+Dvδ:Πδ +(∂t +vδ•∇)fδ +fδdivvδ

=div(Φδ−Πδ
Tvδ)+Dvδ:(fδI+Πδ)+ ḟδ .
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Now
ḟδ=fδ ′ϱδ

ϱ̇δ +fδ ′φφ̇+fδ ′∇φ•(∇φ)̇

=fδ ′ϱδ
ϱ̇δ +fδ ′φφ̇+fδ ′∇φ•(∇φ̇− (Dvδ)

T∇φ)

=div(φ̇fδ ′∇φ)+fδ ′ϱδ
ϱ̇δ +(fδ ′φ−divfδ ′∇φ)φ̇−Dvδ:(∇φ⊗fδ ′∇φ)

and for the terms with time derivative we obtain from the differential equations

fδ ′ϱδ
ϱ̇δ=−fδ ′ϱδ

ϱδdivvδ=−Dvδ:(ϱδfδ ′ϱδ
I)

and with µδ as in the statement and (1.3) writing

ϱδφ̇=divJδ−τττ δ (2.9)

we calculate
(fδ ′φ−divfδ ′∇φ)φ̇=µδφ̇=

µδ

ϱδ

(divJδ−τττ δ)

=div(
µδ

ϱδ

Jδ)−∇
(µδ

ϱδ

)
•Jδ−

µδ

ϱδ

·τττ δ .

Altogether

gδ=div(Φδ−Πδ
Tvδ)+Dvδ:(fδI+Πδ)

+div(φ̇fδ ′∇φ)−Dvδ:(ϱδfδ ′ϱδ
I)

+div(
µδ

ϱδ

Jδ)−∇
(µδ

ϱδ

)
•Jδ−

µδ

ϱδ

·τττ δ−Dvδ:(∇φ⊗fδ ′∇φ)

=div
(
Φδ−Πδ

Tvδ + φ̇fδ ′∇φ +
µδ

ϱδ

Jδ

)
+Dvδ:

(
(fδ−ϱδfδ ′ϱδ

)I−∇φ⊗fδ ′∇φ +Πδ

)
−∇

(µδ

ϱδ

)
•Jδ−

µδ

ϱδ

·τττ δ .

To make the divergence term disappear, we define

Φδ=Πδ
Tvδ− φ̇fδ ′∇φ−

µδ

ϱδ

Jδ .

The remaining should be nonpositive. Therefore let Πδ=Pδ−Sδ, where the pressure term
is

Pδ :=(ϱδfδ ′ϱδ
−fδ)I+∇φ⊗fδ ′∇φ ,

so that we obtain
gδ=−Dvδ:Sδ−∇

(µδ

ϱδ

)
•Jδ−

µδ

ϱδ

·τττ δ ,

which is the residual free energy inequality. �

The following remark is from [3]. It states that the free energy can also be considered
as a function of (ϱ1

δ ,ϱ
2
δ) instead of (ϱδ,φ), and a certain algebraic linear combination of

∇ϱ1
δ and ∇ϱ2

δ .
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2.3 Remark. Let f̃δ be the function

f̄δ(ϱ
1
δ ,ϱ

2
δ ,∇ϱ1

δ ,∇ϱ2
δ):=fδ(ϱ

1
δ +ϱ2

δ ,
ϱ2

δ

ϱ1
δ +ϱ2

δ

,
ϱ1

δ

(ϱ1
δ +ϱ2

δ)
2
∇ϱ2

δ −
ϱ2

δ

(ϱ1
δ +ϱ2

δ)
2
∇ϱ1

δ)

The definition is consistent, since φ=
ϱ2

δ

ϱ1
δ+ϱ2

δ
therefore

∇φ=
ϱ1

δ

(ϱ1
δ +ϱ2

δ)
2
∇ϱ2

δ −
ϱ2

δ

(ϱ1
δ +ϱ2

δ)
2
∇ϱ1

δ .

If we define the chemical potentials by µk := δf̄δ

δϱk
δ
=f̄δ ′ϱk

δ
−divf̄δ ′∇ϱk

δ
we see after a simple

computation that

µ1=fδ ′ϱδ
− µδ

ϱδ

φ, µ2=fδ ′ϱδ
+

µδ

ϱδ

(1−φ), µ2−µ1=
µδ

ϱδ

,

hence in the free energy production

µδ

ϱδ

τττ δ=µ2τττ δ−µ1τττ δ=−
∑

k

µkτττ
k
δ ,

∇
(µδ

ϱδ

)
•Jδ=∇µ2•Jδ−∇µ1•Jδ=−

∑
k

∇µk•J
k
δ ,

if τττ 1
δ =τττ δ, τττ 2

δ =−τττ δ and J1
δ =Jδ, J2

δ =−Jδ are the productions and the fluxes in the mass
equation for ϱ1

δ and ϱ2
δ .

We now consider models for concrete materials satisfy the basic conservation laws (1.1),
that is the mass-momentum system, and the entropy principle, that is in the isothermal
case the free energy inequality. As stated in the above theorem 2.2, this principle consists
of a single inequality gδ≤0. We split this inequality into several terms and assuming the
nonnegativity of each single contribution. This reflects the property of the material under
consideration. Here we assume that

Dvδ:Sδ≥0, (2.10)

∇
(µδ

ϱδ

)
•Jδ +

µδ

ϱδ

·τττ δ≥0. (2.11)

This entropy principle influences also the terms in the conservation laws, which are the
essential equations describing the material. The models discussed in this paper satisfy the
following assumptions.

2.4 General model assumptions. The free energy density is given by

fδ(ϱ,φ,∇φ):=
1

δ
W0(ϱ,φ)+δh(ϱ)

∣∣∇φ
∣∣2

2
+ U(ϱ,φ), (2.12)

with a positive function h and where W0 satisfies

W0(ϱ,φ):=ϱW (φ), W has two local minima at 0 and 1,

U′φ(ϱ,0)=0, U′φ(ϱ,1)=0.
(2.13)
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There is no general assumption on the value of the minima of W . The tensor Πδ has
the structure Πδ=Pδ−Sδ with a pressure Pδ and a stress tensor Sδ as in (2.5), where
Pδ=pfδ

I+∇φ⊗fδ ′∇φ has because of (2.13) now the structure

Pδ=(ϱδU′ϱ−U)I+δ(ϱδh′ϱ−h)

∣∣∇φ
∣∣2

2
I+δh∇φ⊗∇φ. (2.14)

The stress tensor Sδ in (2.5) is given as

Sδ≡Sδ(ϱδ,φ,(Dv)S)=a1δ(divv)I+a2δ

(
(Dv)S− 1

n
(divv)I

)
, (2.15)

where the inequality (2.10) holds, if the Lamé coefficients satisfy

a1δ≡a1δ(ϱδ,φ)>0, a2δ≡a2δ(ϱδ,φ)>0. (2.16)

Therefore in the following examples one has only to verify the inequality (2.11).

The first example is taken from [18], and serves for a jump in the densities at the
interface.

2.5 Example (Jump case). Besides the general assumptions in 2.4 one assumes that

W has two local minima at 0 and 1,

W (0) ̸=W (1).
(2.17)

The inequality (2.11) is satisfied, if

τττ δ :=ηδµδ , ηδ≡ηδ(ϱδ,φ)=
η0(ϱδ)

δ
>0, Jδ :=0. (2.18)

There is a strong connection between this case W (0) ̸=W (1) and the function eh(s):=
h(s)+sh′(s), which follows from the equipartition of energy, see (5.9) and [18, Lemma
31].

The second example is the same as the above except that the minima of the double
well function have the same height. This case was considered also in [17]. It turns out,
that the densities are continuous at the interface provided there is a real mass transition,
see [18, Theorem 1 and Remark 2]. We remark that in the other physical case, that is,
when there is no mass transition at all, the densities at the interface are arbitrarily. By
(1.5) this case is not considered here.

2.6 Example (Continuous case). Besides the general assumptions in 2.4 one assumes
that

W has two local minima at 0 and 1,

W (0)=W (1).
(2.19)

The inequality (2.11) is satisfied, if

τττ δ :=ηδµδ , ηδ≡ηδ(ϱδ,φ)=
η0(ϱδ)

δ
>0, Jδ :=0, (2.20)
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where for simplicity we set η0=1. We assume further, that eh(s)=0 for all s (see also
the proof of 5.2), an assumption which implies W (0)=W (1), see [18, Lemma 31] and [17,
Lemma 16]. It is then s 7→sh(s) constant, that is,

h(s)=
h0

s
with h0=const>0, for simplicity we set h0=1. (2.21)

This implies that (2.14) becomes

Pδ=(ϱδU′ϱ−U)I+
δ

ϱ

(
∇φ⊗∇φ−

∣∣∇φ
∣∣2I), (2.22)

where the last term is trace free.

This example, treated in [17], contains the Allen-Cahn equation, which has been widely
considered in literature but without the compressible fluid equations. Also the Cahn-
Hilliard equation with the free energy (2.12) has been studied in literature, see [1]. Here
we combine as third example the Cahn-Hilliard equation with the compressible fluid
system. Hence we arrive at an example with Jδ ̸=0.

2.7 Cahn-Hilliard example. Besides the general assumptions in 2.4 one assumes that

W has two local minima at 0 and 1,

W (0)=W (1).
(2.23)

The inequality (2.11) is satisfied, if

Jδ :=mδ∇
(µδ

ϱδ

)
, mδ :=m0(ϱδ,φ)>0, τττ δ :=0,

in particular s 7→m0(s,0)>0, s 7→m0(s,1)>0.

(2.24)

We also assume here, that h satisfies (2.21) as above in example 2.6, that is eh(s)=0 for
all s.

The Cahn-Hilliard equation has also been studied in [1, Section 4.1 case III] with a
mobility of the form (2.26). It seems to be more realistic, since in this case in the limit
δ→0 the mass equation and the momentum equation are the only bulk equations, see the
papers [6] and [9].

2.8 Cahn-Hilliard example with degenerate mobility. Besides the general assump-
tions in 2.4 one assumes that

W has two local minima at 0 and 1,

W (0)=W (1).
(2.25)

The inequality (2.11) is satisfied, if

Jδ :=mδ∇
(µδ

ϱδ

)
, τττ δ :=0,

mδ≡mδ(ϱδ,φ)=
1

δ
m0(ϱδ)V (φ) with V (φ):=φ2(1−φ)2

(2.26)

We also assume here, that h satifies (2.21) as above in example 2.6, that is eh(s)=0 for
all s.

9



3 General inner and outer expansion

Let Γ⊂U be a smooth evolving surface without boundary in the open set U⊂R×Rn.
We write the coordinates (t,x) near the set Γ as coordinates (t,y,r), where r is the signed
distance from Γt (say, positive in direction of the normal), that is

x=y+rν(t,y), y∈Γt the orthogonal projection of x,

Γt :={y∈Rn ; (t,y)∈Γ}, ν(t,y)∈Rn a unit normal vector of Γt.

A small number δ>0 is given. It is connected with a phase field approximation and
describes the thickness of the interface. This means, that the quantities of the diffusive
interface make it main changes in the domain

Γδ :={(t,y+rν(t,y)) ; (t,y)∈Γ, |r|≤εδ}. (3.1)

We want to define the inner and outer expansion of a given function u:U→RN . We write
(t,x) 7→u(t,x) in terms of the local coordinates (t,y,z) as a function U (here: U is the inner
variable belonging to u and not a part of the free energy fδ), therefore (t,y,z) 7→U(t,y,z)
is given by

u(t,x)=U(t,y,z) for x=y+δzν(t,y) (3.2)

with
z :=

r

δ
, |r|≤εδ→0, |z|≤zδ :=

εδ

δ
→∞,

that is,

εδ→0 and zδ=
εδ

δ
→∞ as δ→0. (3.3)

(It should be noted: In this section U is the inner variable belonging to u and not a part
of the free energy fδ.) The function U is called the inner variable with an δ expansion,
that is, with an integer j≥0

U=Uδ=
1

δj
U−j + ···+ 1

δ
U−1 +U0 +δU1 + ···+δmUm +O(δm)

in {(t,y,z) ; (t,y)∈Γ,|z|≤ εδ

δ
},

(3.4)

and the function u is called the outer variable, that is (we do not need here higher
expansions in δ),

u=uδ=u0 +O(1)

in {(t,x) ; x=y+rν(t,y),|r|≥ εδ

2
}.

(3.5)

We mean this in the following strong sense.

3.1 Error term. The functions u=uδ and U=Uδ depend on δ in the way that for every
k as δ→0 ∥∥uδ−u0

∥∥
Ck({dist((t,x),Γ )≥ εδ

2
})→0,

1

δm

∥∥Uδ−(δ−jU−j + ...+U0 +δU1 + ...+δmUm)
∥∥

Ck({|z|≤ εδ
δ
})→0.
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Here the function u0 is defined in U \Γ , that is outside Γ , and U−j,...,U0,...,Um are
defined in Γ ×R={(t,y,z) ; (t,y)∈Γ,z∈R}.

Therefore we have a set, where the expansion of uδ and Uδ can be compared, and this
common domain is characterized by

εδ

2
≤|r|≤εδ or

zδ

2
≤|z|≤zδ=

εδ

δ
.

In this common domain we can compare uδ and Uδ, see the identity (3.2), and this identity
can also be written as

uδ(t,y+δzν(t,y))=Uδ(t,y,z) for
zδ

2
≤|z|≤zδ . (3.6)

We now assume j=0. Letting δ→0 (then zδ→∞, εδ→0) and using 3.1 we get the following
boundary conditions

U0(t,y,+∞)=u0
+(t,y),

U0(t,y,−∞)=u0
−(t,y).

(3.7)

Here u0
+ is u0 restricted to {r>0} and u0

− is u0 restricted to {r<0}. Both u0
+ and u0

− are
evaluated at {r=0}. If we perform the derivative with respect to z of the above formula
(3.6) we derive

δ∂ν(t,y)uδ(t,y+δzν(t,y))=∂zUδ(t,y,z) for
zδ

2
≤|z|≤zδ , (3.8)

where ∂ev(t,x):=e•∇v(t,x) denotes the directional derivative in direction e. Inserting
∂euδ=∂eu

0 +O(1) and ∂zUδ=∂zU
0 +δ∂zU

1 +O(δ) and taking for example z=zδ we get
from (3.8) that

δ∂ν(t,y)u
0(t,y+δzδν(t,y))+O(δ)

=∂zU
0(t,y,zδ)+δ∂zU

1(t,y,zδ)+O(δ).
(3.9)

Letting δ→0 we derive ∂zU
0(t,y,+∞)=0. Similar by taking z=−zδ we derive ∂zU

0(t,y,
−∞)=0. Hence

∂zU
0(t,y,+∞)=0, ∂zU

0(t,y,−∞)=0. (3.10)

To proceed further we make the

3.2 Assumption. We consider a function V =∂i
zU

l, i≥0, such that the limit V (t,y,±∞)
exists. The assumption then is, that V satisfies for every k

V (t,y,z)−V (t,y,+∞)=O(z−k) as z→∞,

and similarly for z→−∞. This is satisfied, if z 7→V (t,y,z)−V (t,y,+∞) for example decays
exponentially at +∞ and similarly at −∞.

We want to use this assumption in equation (3.9). Therefore we make another

3.3 Assumption. We assume that we can choose, for example,

εδ=δα with 0<α<1. (3.11)

Then it is satisfied that εδ=δα→0 and zδ=δα−1→∞ as δ→0.

11



We use these assumptions. By identity (3.10) we can set V :=∂zU
0 and obtain ∂zU

0(t,y,
zδ)=O(z−k

δ )=O(δk(1−α)). Now choosing k with k(1−α)>1 this implies ∂zU
0(t,y,zδ)=

O(δ) and we obtain for z=zδ from (3.9) that

δ∂ν(t,y)u
0(t,y+δzδν(t,y))=δ∂zU

1(t,y,zδ)+O(δ)

and dividing the identity by δ

∂ν(t,y)u
0(t,y+δzδν(t,y))=∂zU

1(t,y,zδ)+O(1).

Similar formula we get for z=−zδ→−∞. Thus by letting δ→0 we derive

∂zU
1(t,y,+∞)=∂ν(t,y)u

0
+(t,y),

∂zU
1(t,y,−∞)=∂ν(t,y)u

0
−(t,y).

(3.12)

The boundary conditions shown so far, that is (3.7) and (3.12), are the boundary condi-
tions which are used in this paper. Now let j be arbitrary. We mention that the choice of
zδ in 3.3 has the following consequence.

3.4 Remark. Let j>0. If U=Uδ satisfies (3.4) and U l(±∞)=0 for l=−j,...,−1, then
with zδ as in 3.3 ∥∥δ−jU−j

∥∥
C0({ zδ

2
≤|z|≤zδ})

→0

and ∥∥uδ−u0
∥∥

C0({εδ≥dist((t,x),Γ )≥ εδ
2
})→0

as δ→0. Therefore, if we assume that uδ satisfies reasonable differential equations, the
conclusion (3.5) is satisfied (for k=0).

Proof. If Uδ satisfies (3.4), then

Uδ−(δ−jU−j + ···+δ−1U−1 +U0)→0

uniformly in {|z|≤zδ}. Since U l(±∞)=0 for l<0, we conclude from assumption 3.2 for
V =U l that |U l(z)|≤C|z|−k for all k, hence for zδ

2
≤|z|≤zδ and zδ=δα−1 as in 3.3

δl|U l(z)|≤Cδl|zδ|−k≤2kCδl+k(1−α)→0

as δ→0, if k is large enough. Consequently Uδ−U0→0 in C0({ zδ

2
≤|z|≤zδ}), therefore it

follows again that U0 has boundary data given by u0 and that the assertion is true. �

One can get more results on boundary data by performing similar to (3.8) the m-th
derivative with respect to z of the identity (3.6). One obtains

δm∂m
ν(t,y)uδ(t,y+δzν(t,y))=∂m

z Uδ(t,y,z), (3.13)

where ∂m
e v(t,x):=Dmv(t,x)(e,...,e). Note, that this identity is valid only in a z-strip de-

pending on δ. By inserting the outer and inner expansion one gets

δm∂m
ν(t,y)u

0(t,y+δzν(t,y))+O(δm)

=∂m
z U0(t,y,z)+δ∂m

z U1(t,y,z)+ ...+δm∂m
z Um(t,y,z)+O(δm).

12



By taking inductively for V the functions ∂m
z U j for j=0,...,m−1, and choosing k large

enough, one arrives similar as in the above procedure for z=zδ at

∂m
ν(t,y)u

0(t,y+δzδν(t,y))=∂m
z Um(t,y,zδ)+O(1), (3.14)

and similar for z=−zδ. Therefore

3.5 Boundary conditions. For each m≥1

∂m
z U j(t,y,±∞)=0 for 0≤j<m,

∂m
z Um(t,y,+∞)=∂m

ν(t,y)u
0
+(t,y),

∂m
z Um(t,y,−∞)=∂m

ν(t,y)u
0
−(t,y).

Therefore, the boundary conditions for the inner expansions depend only on the zeroth
order of the outer expansion. We mention, that the boundary conditions can be integrated
to obtain a polynomial growth of the function Um. For m=1 one gets

3.6 Lemma.

U1(t,y,z)=U1(t,y,0)+z∂ν(t,y)u
0
+(t,y)+O(z) as z→∞,

U1(t,y,z)=U1(t,y,0)+z∂ν(t,y)u
0
−(t,y)+O(|z|) as z→−∞.

Proof. For z>0

U1(t,y,z)−U1(t,y,0)=

∫ z

0

∂zU
1(t,y,s)ds=z

(1

z

∫ z

0

f(s)ds
)
,

if f(s):=∂zU
1(t,y,s). Now we have the well known result

1

z

∫ z

0

f(s)ds→f(+∞) as z→∞, (3.15)

if the limit f(+∞) exists. Clearly, from the fact that f(s)→f(+∞) as s→∞ (we assume
that this converges uniformly), we conclude that

|f(s)−f(+∞)|≤ε for s≥κε .

Hence for z≥κε∣∣∣∣ 1

z

∫ z

0

(f(s)−f(+∞))ds

∣∣∣∣≤ 1

z

∫ κε

0

|f(s)−f(+∞)|ds+
1

z

∫ z

κε

|f(s)−f(+∞)|ds.

The first term is bounded by 2
z
κεsup|f |, which tends to 0 as z→∞, and the second term

is estimated by ε. �
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4 Limit equations

The basis for the pointwise convergence of the phase-field approximation is the distribu-
tional formulation of the limit equation, which here requires the measures µµµUα and µµµΓ in
a domain U=U1∪Γ ∪ U2⊂R×Rn, where Γ is an interface of the surrounding domains
U1 and U2, which are defined by

µµµUα(E):=Ln+1(E∩ Uα) for α=1,2,

µµµΓ (E):=

∫
R
Hn−1({x∈Γt ; (t,x)∈E})dL1(t)

(4.1)

for Borel sets E⊂U . Therefore

µµµUα =Ln+1xUα and µµµΓ =(L1×Hn−1)xΓ .

To these measures there correspond in a unique way distributions, which are defined for
test functions ζ∈C∞

0 (U) by

⟨ζ ,µµµUα ⟩=
∫
Uα

ζdLn+1=

∫
R

∫
Uα

t

ζ(t,x)dLn(x)dL1(t),

⟨ζ ,µµµΓ ⟩=
∫
R

∫
Γt

ζ(t,x)dHn−1(x)dL1(t).

Here Γt :={x ; (t,x)∈Γ} and Uα
t :={x ; (t,x)∈Uα}.

With respect to these distributions we formulate the limit equations for the examples
2.5, 2.6, 2.7, and 2.8.

For all models

The equation for the total mass and for the momentum

∂tϱδ +div(ϱδvδ)=0,

∂t(ϱδvδ)+div(ϱδvδ⊗vδ + Πδ)=fδ

are the same in all models considered in this paper. They are the first and third equation
of (1.3). The equation of the total mass is the sum of the two mass equations of system
(1.1). We assume that as δ→0, see section 3, that

ϱδ=ϱα +O(1) locally in Uα with ϱα>0,

vδ=vα +O(1) locally in Uα ,

µδ=µα +O(1) locally in Uα ,

fδ=fα +O(1) locally in Uα ,

akδ=ak +O(1) in arguments in R2 for k=1,2,

(4.2)
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where ak are assumed to be smooth. Moreover, we define

f̂ 1(s):=U(s,0), f̂2(s):=U(s,1),

f1=f̂1(ϱ1), f 2=f̂2(ϱ2).
(4.3)

the free energy in the bulk regions. For the inner quantities we assume

φ=Φ0 +δΦ1 +O(δ) locally in Γ ×R,

ϱδ=R0 +δR1 +O(δ) locally in Γ ×R with R0>0,

vδ=V 0 +δV 1 +O(δ) locally in Γ ×R,

µδ=M0 +δM1 +O(δ) locally in Γ ×R.

(4.4)

With this we obtain the following two basic properties.

4.1 Limit mass equation. For all models the equation for the total mass converges as
δ→0 to the following distributional equation

∂t

(∑
α

ϱαµµµUα

)
+div

(∑
α

ϱαvαµµµUα

)
=0. (4.5)

This equation is equivalent to the strong version

∂tϱ
α +div(ϱαvα)=0 in Uα,

m0 :=ϱ1(vΓ −v1)•ν=ϱ2(vΓ −v2)•ν on Γ ,
(4.6)

where ν=νU1 =−νU2 for α=1,2 on Γ .

Proof. The equation for the total mass of the phase field problem reads in the weak sense∫
U

(
∂tζ ·ϱδ +∇ζ•(ϱδvδ)

)
dLn+1=0 (4.7)

for ζ∈C∞
0 (U). First we take local versions of the test function, that is with a C∞

0 -function
ξ around the free boundary Γ we set ζ(t,x)=ξ(t,y,z). For the definition of the local
coordinates see section 3. One obtains from (4.7) that

0=

∫
U

(
(∂Γ

t ξ− 1

δ
vΓ •ν∂zξ)ϱ+(∇Γ ξ+

1

δ
∂zξν)•(ϱv)

)
dLn+1

=
1

δ

∫
R

∫ +εδ

−εδ

{∫
Γt

(
−vΓ •ν∂zξ ·R0 +∂zξν•(R0V 0)+O(δ)

)
·(1+O(|r|))dHn−1(y)

}
drdt

=

∫
R

∫ +zδ

−zδ

{∫
Γt

(
∂zξ ·R0 ·(V 0−vΓ )•ν +O(δ)

)
(1+O(εδ))dHn−1(y)

}
dzdt .
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Letting δ→0 one gets

0=

∫
R

∫ +∞

−∞

∫
Γt

∂zξ ·R0 ·(V 0−vΓ )•νdHn−1(y)dzdt

and it follows ∂z(R
0(V 0−vΓ )•ν)=0. This is a consequence in local coordinates. Assume

(4.2) and (4.4). Then for (t,y)∈Γ we have in local coordinates z

∂z(R
0Λ0)=0 for all z∈R , (4.8)

where
Λ0 :=(vΓ −V 0)•ν . (4.9)

The boundary conditions for are (not writing the arguments (t,y))

Λ0(−∞)=(vΓ −v1)•ν , Λ0(+∞)=(vΓ −v2)•ν .

�

4.2 Limit momentum equation. Also for all models the momentum equation converges
as δ→0 to the following distributional equation

∂t

(∑
α

ϱαvαµµµUα

)
+div

(∑
α

(
ϱαvα vαT +Πα

)
µµµUα +ΠsµµµΓ

)
=

∑
α

fαµµµUα ,

(4.10)

where
Πα :=pαI−Sα , pα=ϱαf̂α

′ϱ(ϱ
α)− f̂α(ϱα),

Sα :=aα
1 (ϱα)(divvα)I+aα

2 (ϱα)
(
(Dvα)S− 1

n
(divvα)I

)
,

a1
k(s)=ak(s,0), a2

k(s)=ak(s,1) for k=1,2,

Πs=−γγγ(I−ν⊗ν),

(4.11)

where γγγ is given by (4.13). The equation (4.10) is equivalent to the strong version

∂t

(
ϱαvα

)
+div

(
ϱαvα vαT +Πα

)
=fα in Uα,

divΓ Πs=−
∑

α

ϱα(vΓ −vα)•νUαvα +
∑

α

ΠανUα on Γ .
(4.12)

Proof. This is proved in [4, Section 6, in particular (50)] for the Allen-Cahn cases, in
particular the representation

γγγ :=

∫ ∞

−∞

(
h(R0)|∂zΦ

0|2−a2(R
0,Φ0)∂zV

0•ν
)
dz. (4.13)

However, it follows from theorem 2.2, that in all four cases the tensor Πδ is the same
(see (2.5)). Besides this the general free energy (1.4) has been used to derive for Πδ the
representation in (2.14) and (2.15). Hence in all four examples the momentum equation is
the same, therefore the statement of the theorem holds also for the Cahn-Hilliard cases.

�
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After these general statements we now state the special properties of the models 2.5,
2.6, 2.7, and 2.8. In particular, the surface tension γγγ is given by (4.13) and as we shall see,
that γγγ has in different applications different representations, see (4.19), and see (4.27) in
the cases with continuous velocity at the interface. Both formulas follow from (4.13). We
mention that we assume that m0 ̸=0 on a dense set in Γt for each t (see (1.5)). This holds
for the following examples.

Example 2.5

First we consider example 2.5. It is shown in [4] that under certain assumptions the
quantities under the derivatives in (1.1) converge pointwise to quantities in Uα and Γ , so
that the following set of equations is satisfied.

4.3 Limit equation for the jump case 2.5. In the limit δ→0 the distributional equa-
tions are

∂t(ϱ
1µµµU1 +ϱ2µµµU2)+div(ϱ1v1µµµU1 +ϱ2v2µµµU2)=0,

∂t

(∑
α

ϱαvαµµµUα

)
+div

(∑
α

(
ϱαvα vαT +Πα

)
µµµUα +ΠsµµµΓ

)
=

∑
α

fαµµµUα ,

(4.14)

and the kinetic equations read

v1
tan=v2

tan

ϱ1=g1(m
0)

ϱ2=g2(m
0)

 on Γ . (4.15)

Here the quantity Πs is defined through the surface tension γγγ by

Πs :=−γγγ(I−ν⊗ν), γγγ≡γ̂γγ(m0), (4.16)

where ν :=νU1 =−νU2 and the functions γ̂γγ, g1 and g2 are defined in 4.4. Moreover, the
mass flux m0 at the interface is

m0 :=ϱ1(vΓ −v1)•ν=ϱ2(vΓ −v2)•ν , (4.17)

where the equality is satisfied by the distributional mass equation. Here vΓ is the velocity
vector of Γt.

This theorem has been proved in [4] and the free energy inequality in the limit case is
considered in section 7. We remark, that one can also write

∂t(ϱ
1µµµU1)+div(ϱ1v1µµµU1)=τττµµµΓ ,

∂t(ϱ
2µµµU2)+div(ϱ2v2µµµU2)=−τττµµµΓ

(4.18)

with a mass flux τττ . This does not give any additional information compared to the equation
in (4.14) except that τττ =m0.
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We mention, that the global quantities are induced by the approximation of a diffusive
interface model, where the essential step is an existence theorem for the transition profile,
see [18, Lemma 49]. In detail, the equations (4.21) below can be formulated in the phase
space [18, Section 6.2]. In this formulation the existence proof for a transition profile
was performed, see [18, Problem 45]. The proof of [18, Lemma 49] requires that eh(s):=
h(s)+sh′(s) ̸=0 for all s>0, an assumption, which is a bit stronger than W0(0) ̸=W0(1), see
[18, Lemma 31]. Therefore we are sure that in this case the following functions (Rm,Φm)
exist.

4.4 Quantities for example 2.5. The function m 7→γ̂γγ(m), which gives the surface ten-
sion, is given by

γ̂γγ(m):=

∫ ∞

−∞

(
h(Rm)− eh(Rm)a2(Rm,Φm)

2ã(Rm,Φm)

)
|∂zΦm|2dz,

ã:=a1 +
n−1

n
a2 , eh(s):=sh′(s)+h(s) for s>0,

(4.19)

and the functions m 7→g1(m) and m 7→g2(m), which enter in the kinetic relations, are
given by

g1(m):=Rm(−∞), g2(m):=Rm(+∞). (4.20)

Here m 7→(Rm,Φm) is the solution of the following boundary value problem on R (compare
the equations in [4, (7.4)]):

−∂z(h(Rm)∂zΦm)+RmW ′(Φm)=0,

m∂z(
1

Rm

)+
eh(Rm)

2ã(Rm,Φm)
|∂zΦm|2=0,

Φm(−∞)=0, Φm(+∞)=1,

∂zRm(−∞)=0, ∂zRm(+∞)=0.

(4.21)

4.5 Remark. Obviously the functions in 4.4 are part of the zeroth order approximation
of the inner expansion (see (4.4)), that is, it is (Rm0 ,Φm0)=(R0,Φ0). In [4, Theorem 5.3
and Theorem 5.1 and Theorem 6.1] besides the fact that m0=R0Λ0 is a constant one
finds the equations

eh(R
0)

2
|∂zΦ

0|2− ã∂zV
0•ν=0, (4.22)

R0W ′(Φ0)−∂z(h(R0)∂zΦ
0)=0. (4.23)

These two equations are equivalent to the equations in (4.21) and we mention that they
are true in all four cases we consider, that is, they hold for example 2.5 and 2.6, for
example 2.7 (see 10.1) and 2.8 (see 11.1).

For completeness we add the strong mass equations.
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4.6 Equivalent strong equations for example 2.5. The mass equations in (4.14)
together with the kinetic relations (4.15) are equivalent to the strong equations

∂tϱ
α +div(ϱαvα)=0 in Uα for α=1,2,

m0 :=ϱ1(vΓ −v1)•ν=ϱ2(vΓ −v2)•ν on Γ ,

v1
tan=v2

tan on Γ ,

ϱ1=g1(m
0), ϱ2=g2(m

0) on Γ .

(4.24)

Clearly the momentum equation also has a strong version.

Example 2.6

Next we consider example 2.6, where we have a mass transition given by a τττ -term, for
which a Gibbs-Thompson law holds. Like here, as also in the following examples, we
assume that m0 ̸=0 on a dense set in Γt for each t (see (1.5)).

4.7 Limit equation for the continuous case 2.6. In the limit δ→0 the distributional
equations are

∂t(ϱ
1µµµU1)+div(ϱ1v1µµµU1)=τττµµµΓ ,

∂t(ϱ
2µµµU2)+div(ϱ2v2µµµU2)=−τττµµµΓ ,

∂t

(∑
α

ϱαvαµµµUα

)
+div

(∑
α

(
ϱαvα vαT +Πα

)
µµµUα +ΠsµµµΓ

)
=

∑
α

fαµµµUα ,

(4.25)

and the kinetic equations read

v1
tan=v2

tan

ϱ:=ϱ1=ϱ2

γγγϱτττ =γγγκΓ •ν +f2−f 1

 on Γ , (4.26)

where the free energies on the interface are fα=f̂α(ϱ), see the definition in (4.3). The
distributional mass equations together with the first two kinetic equations imply v1=v2

on Γ . In the differential equation the quantity Πs is defined through the constant surface
tension γγγ by

Πs :=−γγγ(I−ν⊗ν), γγγ>0,

γγγ :=

∫ 1

0

√
2(W (s)−W (0))ds=

∫ +∞

−∞
h(R0)|∂zΦ

0|2dL1 ,
(4.27)

where ν :=νU1 =−νU2 . Moreover, κΓ is the curvature vector of Γt.
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This theorem, as far as the strong version of the equations are considered, has been
proved in [17], see [17, Section 9 and Theorem 39]. Because of space limits in this paper
we do not carry out the proof of the distributional version here, this is left to the reader.
But we add the strong version of the mass equations.

4.8 Equivalent strong equations for example 2.6. The two mass equations in (4.25)
together with the kinetic relations (4.26) are equivalent to the strong equations

∂tϱ
α +div(ϱαvα)=0 in Uα for α=1,2,

ϱ:=ϱ1=ϱ2 , v :=v1=v2 on Γ ,

τττ =ϱ(vΓ −v)•ν on Γ ,

γγγϱτττ =γγγκΓ •ν +f2−f 1 on Γ .

(4.28)

The last equation is the well known Gibbs-Thompson law. Clearly the momentum equa-
tion also has a strong version.

Example 2.7

The example 2.7 has the following limit equations and this will be proved in the appendix,
section 10. The free energy inequality in the limit case is considered in section 8.

4.9 Limit equation for the Cahn-Hilliard case 2.7. In the limit δ→0 the distribu-
tional equations are

∂t(ϱ
1µµµU1)+div(ϱ1v1µµµU1 +J)=0,

∂t(ϱ
2µµµU2)+div(ϱ2v2µµµU2 −J)=0,

J=J1µµµU1 +J2µµµU2 , Jα=mα(ϱα)∇
(µα

ϱα

)
,

∂t

(∑
α

ϱαvαµµµUα

)
+div

(∑
α

(
ϱαvα vαT +Πα

)
µµµUα +ΠsµµµΓ

)
=

∑
α

fαµµµUα ,

(4.29)

and the kinetic equations read (for a proof see the end of section 8)

v1
tan=v2

tan

ϱ:=ϱ1=ϱ2

µ:=µ1=µ2=γγγκΓ •ν +f 2−f 1

 on Γ . (4.30)

Here
m1(s):=m0(s,0), m2(s):=m0(s,1). (4.31)
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The quantity Πs and the surface tension γγγ is defined in the same way as in (4.27). It
follows that v :=v1=v2 on Γ , see the proof of the following statement. The free energies
on Γ are defined as in 4.7. As above ν :=νU1 =−νU2 , and κΓ is the curvature vector of Γt.

4.10 Equivalent strong equations for example 2.7. Under the kinetic relations (4.30)
the two mass equations in (4.29) are equivalent to the strong equations

∂tϱ
α +div(ϱαvα)=0 in Uα for α=1,2,

divJα=0 in Uα for α=1,2,

ϱ:=ϱ1=ϱ2 , v :=v1=v2 on Γ ,

µ:=µ1=µ2=γγγκΓ •ν +f 2−f1 on Γ ,

(J2−J1)•ν=−ϱ(vΓ −v)•ν on Γ .

(4.32)

Clearly the momentum equation also has a strong version.

Proof. The strong differential equations in U1 are as consequence of the distributional
version

∂tϱ
1 +div(ϱ1v1 +J1)=0, div(−J1)=0,

and similar the equations in U2 are

divJ2=0, ∂tϱ
2 +div(ϱ2v2−J2)=0.

On Γ , by [2, Theorem 2.8], the distributional equations imply

(J1 +ϱ1(v1−vΓ ))•νU1 +J2•νU2 =0,

J1•νU1 +(J2−ϱ2(v2−vΓ ))•νU2 =0,

which is equivalent to
ϱ2(v2−vΓ )•ν=ϱ1(v1−vΓ )•ν ,

(J2−J1)•ν=ϱ1(v1−vΓ )•ν .

Since ϱ1=ϱ2 on Γ by the kinetic equations, the first inequality immediate implies v1•ν=
v2•ν. Since the tangential components of the velocities also coincide by the kinetic equa-
tions we conclude that v1=v2 on Γ . The Gibbs-Thompson like law, that is µ1=µ2=
γγγκΓ •ν +f 2−f1, is given as a kinetic equation. �

Example 2.8

The example 2.8 has the following limit equations and this will be proved in the appendix,
section 11. The free energy inequality in the limit case is considered in section 9.
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4.11 Limit equation for the Cahn-Hilliard case 2.8. In the limit δ→0 the distribu-
tional equations are

∂t(ϱ
1µµµU1)+div(ϱ1v1µµµU1 +JsµµµΓ )=0,

∂t(ϱ
2µµµU2)+div(ϱ2v2µµµU2 −JsµµµΓ )=0 with Js :=m̂(ϱ)∇Γ

(µ

ϱ

)
,

∂t

(∑
α

ϱαvαµµµUα

)
+div

(∑
α

(
ϱαvα vαT +Πα

)
µµµUα +ΠsµµµΓ

)
=

∑
α

fαµµµUα ,

(4.33)

and the kinetic equations are

v1
tan=v2

tan

ϱ:=ϱ1=ϱ2

µ:=µ1=µ2=γγγκΓ •ν +f 2−f 1

 on Γ . (4.34)

where again f 1 and f2 on the interface are as in 4.7. The quantity Πs and the surface
tension γγγ is defined in the same way as in (4.27), and κΓ as usual. Also as above ν :=
νU1 =−νU2 . The function m̂ is given by

m̂(ϱ):=
m0(ϱ)

ϱ

∫ 1

0

V (s)√
2(W (s)−W (0))

ds (4.35)

4.12 Equivalent strong equations for example 2.8. The two mass equations in (4.33)
and the kinetic relations are equivalent to the strong equations

∂tϱ
α +div(ϱαvα)=0 in Uα for α=1,2,

ϱ:=ϱ1=ϱ2 , v :=v1=v2 on Γ ,

−ϱ(vΓ −v)•ν=divΓ Js on Γ , Js :=m̂(ϱ)∇Γ
(µ

ϱ

)
,

µ:=µ1=µ2=γγγκΓ •ν +f 2−f1 on Γ .

(4.36)

Clearly the momentum equation also has a strong version.

Proof. The strong differential equations in Uα are a direct consequence of the distribu-
tional equation. On Γ , by [2, Theorem 2.8], the distributional equations imply

ϱ1(v1−vΓ )•νU1 =divΓ Js ,

ϱ2(v2−vΓ )•νU2 =−divΓ Js ,

which is equivalent to
ϱ1(v1−vΓ )•ν=ϱ2(v2−vΓ )•ν ,

ϱ1(v1−vΓ )•ν=divΓ Js .
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Since ϱ1=ϱ2 on Γ by the kinetic equations, the first inequality immediate implies v1•ν=
v2•ν. Since the tangential components of the velocities also coincide by the kinetic equa-
tions we conclude that v1=v2 on Γ . The Gibbs-Thompson like law, that is µ1=µ2=
γγγκΓ •ν +f 2−f1, is given as a kinetic equation. �

5 Equipartition of energy

For the phase field model the distributional formulation of the free energy inequality (2.3)
with (2.1) and (2.4) reads for ζ∈C∞

0 (U ;R) and ζ≥0∫
U

(
−∂tζ

(
fδ +

ϱδ

2
|vδ|2

)
−∇ζ•

(
fδvδ +

ϱδ

2
|vδ|2vδ +ΠT

δ vδ− φ̇δh∇φ− µδ

ϱδ

Jδ

)
−ζvδ•fδ

)
dxdt =

∫
U
ζgδdxdt≤ 0 ,

(5.1)

where

fδ=
1

δ
ϱδW (φ)+δh(ϱδ)

|∇φ|2

2
+U(ϱδ,φ),

µδ=
δfδ

δφ
=

1

δ
ϱδW

′(φ)−δdiv(h(ϱδ)∇φ)+U′φ(ϱδ,φ),

(5.2)

gδ=−Dvδ:Sδ−∇
(µδ

ϱδ

)
•Jδ−

µδ

ϱδ

·τττ δ , (5.3)

τττ δ :=
η0(ϱδ)

δ
µδ and Jδ=0 in cases 2.5 and 2.6,

Jδ :=mδ∇
(µδ

ϱδ

)
and τττ δ=0 in cases 2.7 and 2.8,

Πδ=Pδ−Sδ in all cases.

(5.4)

In the δ-problem we consider in this section local test functions ζ and obtain the well
known equipartition of energy. We then consider, see the following four sections 6, 7, 8,
and 9, global test functions ζ.

Local test functions

Consider the special case of a test function ζ=ξ, which has compact support in a δ-
neighbourhood of Γ , that is ζ(t,x)=ξ(t,y,z) with (t,y)∈Γ , z∈R, where x=y+δzν(t,y),
ν=νU1 . Therefore supp(ζ)⊂Γδ, where Γδ is defined in (3.1). The support of z 7→ξ(t,y,z)
is contained in a fixed interval [−zξ,zξ]⊂[−zδ,zδ]. For the derivatives of the test function
we compute

∂tζ=∂Γ
t ξ− 1

δ
vΓ •ν∂zξ+O(δ) ,

∇ζ=∇Γ ξ+
1

δ
∂zξν +O(δ) .

(5.5)
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Then we obtain, if δ is small,

−
∫
U

(
∂tζ

(
fδ +

ϱδ

2
|vδ|2

)
+∇ζ•

(
fδvδ +

ϱδ

2
|vδ|2vδ +ΠT

δ vδ− φ̇δh∇φ− µδ

ϱδ

Jδ

)
+ζvδ•fδ

)
dxdt

=−
∫
R

∫ +εδ

−εδ

∫
Γt

{(
∂Γ

t ξ− 1

δ
vΓ •ν∂zξ

)
fδ

+
(
∇Γ ξ+

1

δ
∂zξν

)
•
(
fδvδ +ΠT

δ vδ− φ̇δh∇φ− µδ

ϱδ

Jδ

)
+O(

1

δ
)Xsuppξ

}
(1+O(|r|))dHn−1(y)drdt

=−
∫
R

∫ +zδ

−zδ

∫
Γt

{
∂zξ

(
fδ(vδ−vΓ )•ν +

(
ΠT

δ vδ− φ̇δh∇φ− µδ

ϱδ

Jδ

)
•ν

)
+O(1)Xsuppξ

}
dHn−1(y)dzdt,

where we have used that fδ=O(δ−1), which is a consequence of the calculations from [4,
Section 5 and 6] presented here as a list:

vδ = V 0 +O(δ)

λδ :=(vΓ −vδ)•ν=Λ0 +O(δ)

fδ =
1

δ
ϱδW (φ)+δh(ϱδ)

|∇φ|2

2
+U(ϱδ,φ)

=
1

δ

(
R0W (Φ0)+h(R0)

|∂zΦ
0|2

2

)
+O(1)

δfδ

δφ
=

1

δ
ϱδW

′(φ)−δdiv
(
h(ϱδ)∇φ

)
+U′ϱ(ϱδ,φ)

=
1

δ

(
R0W ′(Φ0)−∂z

(
h(R0)∂zΦ

0
))

+O(1)

φ̇ = (∂t +vδ•∇)φ=
1

δ

(
−∂zΦ

0ν•vΓ +∂zΦ
0vδ•ν

)
+O(1)

= − 1

δ
∂zΦ

0 ·Λ0 +O(1)

φ̇δh∇φ•ν = φ̇h∂zΦ=−1

δ
h(R0)|∂zΦ

0|2Λ0 +O(1)
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and

Dvδ =
1

δ
∂zV

0⊗ν +O(1)

Πδ =Pδ−Sδ

=pU I+
δ

2
ph|∇φ|2I+δh∇φ⊗∇φ−(a1−

a2

n
)divvδ I−a2(∇vδ)

S

=
1

δ

( 1

2
ph|∂zΦ

0|2I+h|∂zΦ
0|2ν⊗ν

−(a1−
a2

n
)ν•∂zV

0I−a2ν•∂zV
0ν⊗ν

)
+O(1)

Πδν=pU ν +
δ

2
ph|∇φ|2ν +δh∇φ•ν∇φ

−(a1−
a2

n
)divvδν−a2(∇vδ)

Sν +O(1)

=
1

δ

(1

2
eh(R

0)|∂zΦ
0|2− ã(R0,Φ0)∂zV

0•ν
)
ν +O(1),

where we have used that ∂zV
0∈span{ν}, see [4, Lemma 6.3], and the definitions

eh(s):=sh′(s)+h(s) for s∈R, ã:=a1 +
n−1

n
a2 ,

see (4.19) and [4, Theorem 6.1]. We obtain that the above integral equals

=
1

δ

∫
R

∫ +zδ

−zδ

∫
Γt

{
∂zξ

((
R0W (Φ0)− h

2
|∂zΦ

0|2
)
Λ0−

(eh

2
|∂zΦ

0|2

−ã∂zV
0•ν

)
V 0•ν

)
+O(δ)Xsuppξ

}
dHn−1(y)dzdt.

Multiplying this left-hand side with δ we derive that it converges as δ→0 to∫
R

∫ +∞

−∞

∫
Γt

∂zξ
((

R0W (Φ0)− h

2
|∂zΦ

0|2
)
Λ0

−
(eh

2
|∂zΦ

0|2− ã∂zV
0•ν

)
V 0•ν

)
dHn−1(y)dzdt.

(5.6)

The first term will give the left-hand side of the equipartition of energy in 5.1, and the
second term vanishes because of (4.22).

Allen-Cahn cases 2.5 and 2.6
We now turn to the right-hand side of (5.1). In the Allen-Cahn cases we compute using
(2.9)

τττ δ=−ϱδφ̇=+
1

δ
R0Λ0∂zΦ

0 +O(1) ,
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hence, taking µδ from the above list and keeping in mind that ζ≥0 has support in Γδ,∫
Γδ

ζ
(
−τττ δ

µδ

ϱδ

)
dxdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ξ
(
−Λ0∂zΦ

0 1

δ

(
R0W ′(Φ0)−∂z(h(R0)∂zΦ

0)
))

dHn−1(y)dzdt + O(1),

which by (4.23) is O(1).

Cahn-Hilliard case 2.7
In the Cahn-Hilliard case we compute

Jδ=mδ∇
(µδ

ϱδ

)
=

m0(R
0,Φ0)

δ
∂z

(M0

R0

)
ν +O(1)

hence ∫
Γδ

ζ
(
−∇

(µδ

ϱδ

)
•Jδ

)
dxdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ξ
(
− m0(R

0,Φ0)

δ

∣∣∣∣∂z

(M0

R0

)∣∣∣∣2)dHn−1(y)dzdt +O(1),

which by 10.1 is O(1).

Cahn-Hilliard case with degenerate mobility 2.8
In the other Cahn-Hilliard case we compute

Jδ=mδ∇
(µδ

ϱδ

)
=

m0(R
0)V (Φ0)

δ
∇Γ

(M0

R0

)
+O(1),

hence ∫
Γδ

ζ
(
−∇

(µδ

ϱδ

)
•Jδ

)
=O(1),

since by 11.1 is ∂z

(
M0

R0

)
=0.

By (5.3) and making use of the above list we obtain for the right-hand side of (5.1)
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(with ζ≥0 having support in Γδ)

0≥
∫
U
ζgδdxdt=

∫
Γδ

ζgδdxdt

=−
∫
R

∫ +εδ

−εδ

∫
Γt

ξ
(
Dvδ:Sδ +∇

(µδ

ϱδ

)
•Jδ +

µδ

ϱδ

·τττ δ

)
(1+O(|r|))dHn−1(y)drdt

=−
∫
R

∫ +zδ

−zδ

∫
Γt

ξ
1

δ
∂zV

0⊗ν:
(
(a1−

1

n
a2)∂zV

0•ν I

+
a2

2

(
∂zV

0⊗ν +ν⊗∂zV
0
))

dHn−1(y)dzdt + O(1).

=−1

δ

∫
R

∫ +zδ

−zδ

∫
Γt

ξ · ã|∂zV
0•ν|2dHn−1(y)dzdt +O(1).

We multiply this expression by δ and obtain in the limit δ→0

0≥−
∫
R

∫ +∞

−∞

∫
Γt

ξ · ã|∂zV
0•ν|2dHn−1(y)dzdt. (5.7)

Thus with (5.6) and (5.7) we have derived the

5.1 Equipartition of energy. We have in local coordinates on Γ ×R

∂z

((h(R0)

2
|∂zΦ

0|2−R0W (Φ0)
)
Λ0

)
=−ã(R0,Φ0)|∂zV

0•ν|2≤0 .

We mention that this statement is the free energy identity on the surface and it has a
classical version. In fact, integrating the above formula from −∞ to z one obtains

0≥−
∫ z

−∞
ã(R0,Φ0)|∂zV

0•ν|2dL1

=
(h(R0(z))

2
|∂zΦ

0(z)|2−R0(z)W (Φ0(z))
)
Λ0(z)+R0(−∞)W (0)Λ0(−∞)

=m0
(h(R0(z))

2R0(z)
|∂zΦ

0(z)|2−(W (Φ0(z))−W (0))
)
.

(5.8)

Now choose z=∞ and obtain

m0
(
W (0)−W (1)

)
=−

∫ ∞

−∞
ã(R0,Φ0)|∂zV

0•ν|2dL1≤0. (5.9)

This will be the free energy inequality on the surface Γ in section 7. For sections 6, 8, and
9, the following theorem is important. It has already been stated in [17, Lemma 20],

5.2 Equipartition of energy (classical). In the continuous cases 2.6, 2.7, and 2.8 it
follows

∂zV
0•ν=0
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in Γ ×R, and if m0 is nonzero on a dense set of Γ ×R

R0
(
W (Φ0)−W (0)

)
=

h(R0)

2
|∂zΦ

0|2 . (5.10)

Proof. The proof is taken from [17, Lemma 20]. From (5.9) and W (0)=W (1) one obtains∫ ∞

−∞
ã(R0,Φ0)|∂zV

0•ν|2dL1=0.

Now ã(R0,Φ0)>0 and therefore one concludes from this identity that ∂zV
0•ν=0. Inserting

this in the above integral (5.8) we obtain

0=m0
(
W (Φ0(z))−W (0)− h(R0(z))

2R0(z)
|∂zΦ

0(z)|2
)

for all z. �

6 Continuous density

Here we are dealing with example 2.6 and start with the δ-version of the free energy
inequality (5.1). Due to the fact, that in this case (as shown in 5.2)

∂zV
0•ν=0, (6.1)

the right-hand side of the equipartition of energy 5.1 vanishes. We assume that m0 is
nonzero on a dense set of Γ ×R. Then the classical equipartition of energy 5.2 holds.

This has an important consequence, namely that the order 1
δ
-term of the free energy

production is zero (a different behaviour than in section 7). This implies that the order of
the highest nonzero term in the free energy identity on the surface is the same as the order
of the highest nonzero term in the surrounding fluids, resulting in a single distributional
free energy inequality.

But before we prove this, we state a theorem, which also is needed in the proof of the
limiting equations.

6.1 Theorem. Consider a solution (ϱδ,φ,vδ) of (1.3) for example 2.6 assuming (4.2) and
(4.4). Then in Γδ we have for the first variation for δ small

µδ :=
δfδ

δφ
=U′φ(R0,Φ0)+κΓ •νh(R0)∂zΦ

0 +Υδ +O(δ),

Υδ :=
1

δ

(
W0(R̂,Φ̂)−∂z(h(R̂)∂zΦ̂)

)
=O(1),

R̂:=R0 +δR1 , Φ̂:=Φ0 +δΦ1 ,∫ +zδ

−zδ

Υδ∂zΦ
0dz−→0 as δ→0.

Here κΓ is the curvature vector of Γt, the density is continuous on Γ , that is ϱ:=ϱ1=ϱ2,
and we have used the assumptions W0(ϱ,φ)=ϱW (φ) and h(s)= 1

s
.
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Proof. From (4.23) it follows that Υδ=O(1). Then we obtain, since R0 is independent of
z,

Υδ=
1

δ

(
W0(R̂,Φ̂)−∂z(h(R̂)∂zΦ̂)

)
=R1W ′(Φ0)−∂z(h

′(R0)R1∂zΦ
0)+R0W ′′(Φ0)Φ1−∂z(h(R0)∂zΦ

1)+O(δ)

=R1W ′(Φ0)+
1

|R0|2
∂z(R

1∂zΦ
0)+R0W ′′(Φ0)Φ1− 1

R0
∂2

zΦ
1 +O(δ)

Hence ∫ zδ

−zδ

Υδ∂zΦ
0dz=

∫ zδ

−zδ

(
R1∂z(W (Φ0))+

1

|R0|2
∂z(R

1∂zΦ
0)∂zΦ

0
)

dz

+

∫ zδ

−zδ

(
R0∂z(W

′(Φ0))Φ1− 1

R0
∂zzΦ

1∂zΦ
0
)

dz

=

∫ zδ

−zδ

R1∂z

(
W (Φ0)− 1

|R0|2
|∂zΦ

0|2

2

)
dz

+
[ R1

|R0|2
|∂zΦ

0|2
]zδ

−zδ

+
[
R0W ′(Φ0)Φ1− 1

R0
∂zΦ

1∂zΦ
0
]zδ

−zδ

+

∫ zδ

−zδ

∂zΦ
1
(
−R0W ′(Φ0)+∂z

( 1

R0
∂zΦ

0
))

dz

=
[ R1

|R0|2
|∂zΦ

0|2
]zδ

−zδ

+
[
R0W ′(Φ0)Φ1− 1

R0
∂zΦ

1∂zΦ
0
]zδ

−zδ

−→0 as δ→0.

Here we have used the identities (5.10) and (4.23). �

In order to show the convergence of the energy identity we have to normalize the free
energy fδ. We introduce

W :=W (0)=W (1) (in example 2.6),

f̃δ :=fδ−
1

δ
ϱδW =

1

δ
ϱδ(W (φ)−W )+δh(ϱδ)

∣∣∇φ
∣∣2

2
+ U(ϱδ,φ)

(6.2)

Since from the mass conservation

−
∫
U

(
∂tζ

1

δ
ϱδW +∇ζ•(

1

δ
ϱδWvδ)

)
dxdt=0

we can rewrite the energy identity (5.1) (it is Jδ=0 in example 2.6) by∫
U

(
−∂tζ

(
f̃δ +

ϱδ

2
|vδ|2

)
−∇ζ•

(
f̃δvδ +

ϱδ

2
|vδ|2vδ +ΠT

δ vδ− φ̇δh∇φ
)

−ζvδ•fδ

)
dxdt =

∫
U
ζgδdxdt≤ 0 ,

(6.3)
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Of course, then

δf̃δ

δφ
=

δfδ

δφ
=µδ , p f̃δ

=pfδ
,

therefore the differential equations (1.1), which describe the material under consideration,
that is the mass and momentum equations with the constitutive relations in 2.4 are not
changed by the normalization of the free energy. We mention, that this normalization of
the free energy is quite standard, see also 7.3.

Global test functions

Let us now choose test functions ζ as function of (t,x). We prove that the three terms
in the free energy identity converge in the sense of distributions. By this we mean that
the term under the time derivative, the term under the divergence, and the right side
converge to a limit as δ→0 as stated in 6.2. Therefore for each term we have to take a
different test function. For the energy production term we compute with a test function
ζ∈C∞

0 (U ;R) ∫
U
ζgδdLn+1=

∑
α

∫
Uα

δ

ζgδdLn+1 +

∫
Γδ

ζgδdLn+1 ,

with gδ=φ̇
δfδ

δφ
−Dvδ:Sδ .

Now vδ→vα as δ→0 locally in Uα, hence Dvδ→Dvα. Since Dvδ=O(δ−1) near the interface
by the list in section 5, it follows (see 3.4) that

∥Dvδ−Dvα∥C0(Uα
δ )→0,

hence ∫
Uα

δ

ζDvδ:SδdLn+1→
∫
Uα

ζDvα:SαdLn+1 .

Similarly, φ̇→0 locally in Uα and φ̇=O(δ−1) near the interface by the list in section 5,
and

δfδ

δφ
−U′φ(ϱδ,φ)=

1

δ

(
W0′φ(ϱδ,φ)−δ2div(h(ϱδ)∇φ)

)
near the interface. It follows (see 3.4) that∥∥∥∥ δfδ

δφ
−U′φ(ϱδ,φ)

∥∥∥∥
C0(Uα

δ )

→0, ∥φ̇∥C0(Uα
δ )→0.

We conclude that ∫
Uα

δ

ζφ̇
δfδ

δφ
dLn+1→0.

We now come to the integral over Γδ. Let us start with the fδ-term. With φ̇ from the list
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and the statement about fδ in 6.1 we compute∫
Γδ

ζφ̇
δfδ

δφ
dLn+1=

∫
R

∫
Γt

∫ +εδ

−εδ

ζφ̇
δfδ

δφ
(1+O(|r|))drdHn−1(y)dt

=

∫
R

∫
Γt

∫ +zδ

−zδ

ζδφ̇
δfδ

δφ
(1+O(εδ))dzdHn−1(y)dt

=−
∫
R

∫
Γt

∫ +zδ

−zδ

ζ(t,x)
(
Λ0∂zΦ

0(U′φ(R0,Φ0)+κΓ •νh(R0)∂zΦ
0 +Υδ)+O(δ)

)
·(1+O(εδ))dzdHn−1(y)dt

=−
∫
R

∫
Γt

ζ(t,y)

∫ +zδ

−zδ

(
Λ0∂zΦ

0(U′φ(R0,Φ0)+κΓ •νh(R0)∂zΦ
0 +Υδ)+O(δ)

)
·(1+O(εδ))dzdHn−1(y)dt +O(εδ),

where we have used, that for x=y+δzν(t,y) the test function, because it is a global
test function, satisfies ζ(t,x)=ζ(t,y)+O(εδ), and therefore the difference of the integrals,
since Υδ=O(1), is estimated by (C and C ′ are constants)∫

R

∫
Γt

∫ +zδ

−zδ

O(εδ)
(
C|∂zΦ

0|+O(δ)
)
(1+O(εδ))dzdHn−1(y)dt

=

∫
R

∫
Γt

O(εδ)
(
C ′+O(δzδ)

)
(1+O(εδ))dHn−1(y)dt=O(εδ).

We have for the Υδ-term in the above integral by 6.1, using that Λ0 is independent of z,∫
R

∫
Γt

ζ(t,y)

∫ +zδ

−zδ

Λ0∂zΦ
0ΥδdzdHn−1(y)dt→0.

Thus the entire integral converges to

→−
∫
R

∫
Γt

ζ(t,y)

∫ +∞

−∞
Λ0∂zΦ

0
(
U′φ(R0,Φ0)+κΓ •νh(R0)∂zΦ

0
)
dzdHn−1(y)dt

=−
∫
R

∫
Γt

ζ(t,y)Λ0

∫ +∞

−∞

(
∂z(U(R0,Φ0))+κΓ •νh(R0)|∂zΦ

0|2
)
dzdHn−1(y)dt,

where also R0 is independent of z, therefore ∂z(U(R0,Φ0))=U′φ(R0,Φ0)∂zΦ
0. Therefore

we can integrate this and obtain that it is equal to

=−
∫
R

∫
Γt

ζ(t,y)Λ0
(
U(ϱ2,1)−U(ϱ1,0)+γγγκΓ •ν

)
dHn−1(y)dt

=−
∫
Rn+1

ζΛ0
(
U(ϱ2,1)−U(ϱ1,0)+γγγκΓ •ν

)
dµµµΓ

=−
⟨
ζ ,Λ0

(
U(ϱ2,1)−U(ϱ1,0)+γγγκΓ •ν

)
µµµΓ

⟩
.

31



And in this case by (6.1)

Λ0=(vΓ −V 0)•ν=(vΓ −v1)•ν=(vΓ −v2)•ν, ν=νU1 =−νU2 . (6.4)

Thus we have shown the convergence of the production term in the following

6.2 Theorem. Consider a solution (ϱδ,φ,vδ) of (1.3) for example 2.6 assuming (4.2) and
(4.4). Then as δ→0 the solution converges pointwise in the sense of distributions in U :(

f̃δ +
ϱδ

2
|vδ|2

)
Ln+1 −→

∑
α

(
fα +

ϱα

2
|vα|2

)
µµµUα +f sµµµΓ ,

((
f̃δ +

ϱδ

2
|vδ|2

)
vδ− φ̇δh(ϱδ)∇φ

)
Ln+1

−→
∑

α

(
fα +

ϱα

2
|vα|2

)
vαµµµUα +f s(vΓ +vtan)µµµΓ ,

Πδ
TvδLn+1 −→

∑
α

ΠαTvαµµµUα +ΠsTvtanµµµΓ ,

vδ•fδLn+1 −→
∑

α

vα•fαµµµUα ,

gδLn+1 −→ −Dvα:SαµµµUα −λ
(
γγγκΓ •ν +f2−f 1

)
µµµΓ

=−Dvα:SαµµµUα −
∑

α

λα
(1

2
γγγκΓ •νUα −fα

)
µµµΓ .

(6.5)

Here

f s=γγγ :=

∫ +∞

−∞
h(R0)|∂zΦ

0|2dz>0,

Πs=−γγγ(I−ν⊗ν),

(6.6)

and
f 1=f̂ 1(ϱ1)=U(ϱ1,0) and f2=f̂2(ϱ2)=U(ϱ2,0),

v :=v1=v2 , ϱ:=ϱ1=ϱ2 on Γ ,

λ=λ1=−λ2 , ν=νU1 =−νU2 ,

λα :=(vΓ −v)•νUα for α=1,2.

(6.7)

Let us continue the proof of the theorem by showing the convergence of the other terms
under derivatives in the free energy inequality (5.1).

First we show that
f̃ δLn+1 −→

∑
α

fαµµµUα +f sµµµΓ , (6.8)

where f s is given by (6.6). Here we use test functions ζ1∈C∞
0 (U ;R) and write∫

U
ζ1 f̃δdxdt=

∑
α

∫
Uα

δ

ζ1f̃δdxdt+

∫
Γδ

ζ1f̃δdxdt .
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Since W is a smooth function, hence W (φ)−W→0 in Uα, it converges∑
α

∫
Uα

δ

ζ1 f̃δdxdt −→
∑

α

∫
Uα

ζ1 fαdxdt as δ→0,

where fα in Uα is given by (6.7). For the integral near the surface we compute∫
Γδ

ζ1f̃δdxdt

=

∫
R
δ

∫ +zδ

−zδ

∫
Γt

ζ1
1

δ

(
R0(W (Φ0)−W )+h(R0)

|∂zΦ
0|2

2
+O(δ)

)
·(1+O(εδ))dHn−1(y)dzdt

−→
∫
R

∫
Γt

ζ1f
sdHn−1(y)dt ,

since W =W (0) and if

f s :=

∫ +∞

−∞

(
R0(W (Φ0)−W (0))+h(R0)

|∂zΦ
0|2

2

)
dz

=

∫ +∞

−∞
h(R0)|∂zΦ

0|2dz ,

(6.9)

where the last identity follows from the equipartition of energy 5.2. Thus (6.8) is proved.
Next we show that(

(f̃δ +
ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
Ln+1

−→
∑

α

(
fα +

ϱα

2
|vα|2

)
vαµµµUα +f s(vΓ +vtan)µµµΓ .

(6.10)

For this we use test functions ζ2∈C∞
0 (U ;Rn). Then∫

U
ζ2•

(
(f̃δ +

ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
dxdt

=
∑

α

∫
Uα

δ

ζ2•
(
(f̃δ +

ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
dxdt

+

∫
Γδ

ζ2•
(
(f̃δ +

ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
dxdt .

Since W is a smooth function, we obtain in the bulk regions∑
α

∫
Uα

δ

ζ2•
(
(f̃δ +

ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
dxdt

−→
∑

α

∫
Uα

ζ2•(f
α +

ϱα

2
|vα|2)vαdxdt as δ→0.
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Now we evaluate the interface region. We write

vδ=vΓ +vtan−λδν where λδ :=(vΓ −vδ)•ν

and ν=νU1 =−νU2 . We compute∫
Γδ

ζ2•
(
f̃δ(vΓ +vtan)

)
dxdt

=

∫
R
δ

∫ +zδ

−zδ

∫
Γt

ζ2•
((1

δ

(
R0(W (Φ0)−W )+h(R0)

|∂zΦ
0|2

2

)
+O(1)

)
(vΓ +vtan)

)
·(1+O(εδ))dHn−1(y)dzdt

−→
∫
R

∫
Γt

ζ2•
(
f s(vΓ +vtan)

)
dHn−1(y)dt

whith f s defined in (6.9). The term that remains is∫
Γδ

ζ2•(−f̃δλδν− φ̇δh∇φ)dxdt

=

∫
R
δ

∫ +zδ

−zδ

∫
Γt

ζ2•
(
− 1

δ

(
R0(W (Φ0)−W )+h(R0)

|∂zΦ
0|2

2

)
Λ0ν

+
1

δ
Λ0∂zΦ

0h(R0)∂zΦ
0ν +O(1)

)
·(1+O(εδ))dHn−1(y)dzdt

=

∫
R
δ

∫ +zδ

−zδ

∫
Γt

ζ2•
(
− 1

δ

(
R0(W (Φ0)−W )−h(R0)

|∂zΦ
0|2

2

)
Λ0ν

+O(1)
)
·(1+O(εδ))dHn−1(y)dzdt

−→ 0 as δ→0

again by the equipartition of energy 5.2. Thus (6.10) is proved.
The last property which we have to show is

ΠT
δ vδLn+1 −→

∑
α

(Πα)TvαµµµUα +ΠsvtanµµµΓ , (6.11)

where Πs is given by (6.6). We use again test functions ζ2∈C∞
0 (U ;Rn) and write∫

U
ζ2•

(
ΠT

δ vδ

)
dxdt=

∑
α

∫
Uα

δ

ζ2•
(
ΠT

δ vδ

)
dxdt+

∫
Γδ

ζ2•
(
ΠT

δ vδ

)
dxdt .

We obtain ∑
α

∫
Uα

δ

ζ2•
(
ΠT

δ vδ

)
dxdt −→

∑
α

∫
Uα

ζ2•
(
(Πα)Tvα

)
dxdt .
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Since in this case (4.22) holds and ∂zV
0=0, hence eh=0, we obtain

ΠT
δ =pUI+

δ

2
ph|∇φ|2I+δh∇φ⊗∇φ−(a1−

a2

n
)divvδI−a2(∇vδ)

S

=
1

δ

(ph

2
|∂zΦ

0|2I+h|∂zΦ
0|2ν⊗ν−(a1−

a2

n
)ν•∂zV

0I

−a2(ν•∂zV
0)ν⊗ν

)
+O(1)

=
1

δ

(ph

2
|∂zΦ

0|2I+h|∂zΦ
0|2ν⊗ν

)
+O(1)

=
1

δ

(eh

2
|∂zΦ

0|2I−h|∂zΦ
0|2(I−ν⊗ν)

)
+O(1)

=−1

δ
h(R0)|∂zΦ

0|2(I−ν⊗ν)+O(1),

hence ∫
Γδ

ζ2•
(
ΠT

δ vδ

)
dxdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ζ2•
(
δΠT

δ vδ

)
(1+O(εδ))dHn−1(y)dzdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ζ2•
(
−h(R0)|∂zΦ

0|2(I−ν⊗ν)+O(δ)
)(

V 0 +O(δ)
)

·(1+O(εδ))dHn−1(y)dzdt

−→
∫
R

∫
Γt

ζ2•
(
−

∫ +∞

−∞
h(R0)|∂zΦ

0|2dz
)
(I−ν⊗ν)vtandHn−1(y)dt

as δ→0. Thus also (6.11) is proved.
Theorem 6.2 in connection with inequality 2.2 implies the following free energy inequal-

ity.

6.3 Theorem. For example 2.6 the limit free energy inequality in the distributional sense
is

∂t

(∑
α

(
fα +

ϱα

2
|vα|2

)
µµµUα +f sµµµΓ

)
+div

(∑
α

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα

)
µµµUα +f svΓµµµΓ

)
−

∑
α

vα•fαµµµUα

=−
∑

α

Dvα:SαµµµUα −
∑

α

λα
(1

2
γγγκΓ •νUα −fα

)
µµµΓ ≤0.

Proof. In 6.2 we make the following observations. The definition of λ and λα in (6.7) gives

λ
(
γγγκΓ •ν +f2−f 1

)
=

∑
α

λα
(1

2
γγγκΓ •νUα −fα

)
(6.12)
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and since f s and Πs are given by the surface tension γγγ we obtain

f svtan=γγγvtan , ΠsTvtan=−γγγvtan ,

that is f svtan +ΠsTvtan=0. �

From [2, Theorem 2.8] one obtains that this distributional equation is equivalent to
differential equations in Uα and a differential equation on Γ , where we use (6.12).

6.4 Theorem. For example 2.6 the distributional free energy inequality in the limit is
equivalent to the following strong equations and inequalities:

∂t

(
fα +

ϱα

2
|vα|2

)
+div

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα

)
−vα•fα

=−Dvα:Sα≤0

(6.13)

in the domain Uα, and

∂Γ
t f s−f sκΓ •vΓ −

2∑
α=1

(
vα•ΠανUα −

(
fα +

ϱα

2
|vα|2

)
λα

)
=−λ

(
γγγκΓ •ν +f 2−f1

)
≤0.

(6.14)

on the surface Γ .

The equalities in this theorem can be proved by the following considerations. On the
interface the velocity is continuous, that is v :=v1=v2, and ϱ:=ϱ1=ϱ2. The definitions of
λα and λ imply, that in (6.14)∑

α

(
fα +

ϱα

2
|vα|2

)
λα=

∑
α

fαλα=−λ(f2−f 1)

and

f sκΓ •vΓ +
2∑

α=1

vα•ΠανUα =γγγκΓ •vΓ +v•

2∑
α=1

ΠανUα

=γγγκΓ •vΓ −v•(γγγκΓ •νν)=λγγγκΓ •ν .

And ∂Γ
t f s=0 (see [17, Lemma 28]).

7 Jump in the density

Here we are dealing with example 2.5. Now in this case ∂zV
0•ν is nonzero in general.

Therefore the right-hand side of the equipartition of energy 5.1 does not vanish (in contrast
to section 6). This has, as we shall see, important consequences. So it follows from (5.9)
that

m0
(
W (0)−W (1)

)
<0,
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hence m0 has the opposite sign of W (0)−W (1) ̸=0. More important is the fact, at the first
look a surprising circumstance, that the δ-free energy identity (5.1) has a leading nonzero
term of order 1

δ
. As a consequence the δ-free energy identity has to be multiplied by δ.

This procedure keeps the inequality untouched, because the dissipation term is multiplied
by a positive number. Hence the sign of the free energy production is preserved.

Global test functions and multiplication by δ

We choose test functions ζ as function of (t,x) in (5.1) and multiply the entire equation
by δ. We obtain in the limit δ→0

7.1 Theorem. Consider the solution of the δ-problem. As δ→0 the terms in the free
energy identity multiplied by δ converge pointwise in the sense of distributions in U :

δ
(
fδ +

ϱδ

2
|vδ|2

)
Ln+1−→

∑
α

ϱαW (φα)µµµUα ,

δ
((

fδ +
ϱδ

2
|vδ|2

)
vδ− φ̇δh(ϱδ)∇φ

)
Ln+1−→

∑
α

ϱαW (φα)vαµµµUα ,

δΠδ
TvδLn+1−→0, δvδ•fδLn+1−→0,

δgδLn+1−→−
(∫ +∞

−∞
ã(R0,Φ0)|∂zV

0•ν|2dz
)
µµµΓ .

(7.1)

Here

φα :=

{
0 in U1 for α=1,

1 in U2 for α=2.

Proof. We multiply the free energy inequality (5.1) by δ>0. The right-hand side of (5.1)
becomes, since Dvδ is bounded in Uα and since in Uα the functions approximate their
limit exponentially in z,

δ

∫
U
ζgδdxdt=−δ

∫
Γδ

ζDv:Sdxdt−δ

∫
Γδ

ζτττ δ
µδ

ϱδ

dxdt+O(δ).

Since −ϱδφ̇=τττ δ=ηδµδ we obtain with φ̇ from the above list

τττ δµδ

ϱδ

=
ϱδ

ηδ

φ̇2=
R0 +O(δ)

η0(R0)+O(δ)
δ
(
− 1

δ
Λ0∂zΦ

0 +O(1)
)2

,

=
1

δ

R0

η0(R0)

(
Λ0∂zΦ

0
)2

+O(1)

and this gives∫
Γδ

ζτττ δ
µδ

ϱδ

dxdt=

∫
Γδ

(
ζ
1

δ

R0

η0(R0)

(
Λ0∂zΦ

0
)2

+O(1)
)

dxdt

=

∫
R

∫
Γt

∫ +zδ

−zδ

ζ
R0

η0(R0)

(
Λ0∂zΦ

0
)2

dzdHn−1(y)dt+O(εδ)=O(1).
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Therefore the right-hand side is

=−δ

∫
Γδ

ζDv:Sdxdt+O(δ)

=−
∫

Γδ

ζ
(1

δ
ã(R0,Φ0)|∂zV

0|2 +O(1)
)

dxdt+O(δ)

→−
∫
R

∫
Γt

ζ

∫ +∞

−∞
ã(R0,Φ0)|∂zV

0•ν|2dzdHn−1(y)dt

as δ→0. And for the left-hand side we obtain for test functions ζ1∈C∞
0 (U ;R) and ζ2∈

C∞
0 (U ;Rn), since locally in Uα the functions approximate their limit exponentially in z,

−δ

∫
U

{
ζ1

(
fδ +

1

2
ϱ|v|2

)
+ζ2•

(
fδv+

1

2
ϱ|v|2v+ΠT

δ v− φ̇δh∇φ
)}

dxdt

=−
2∑

α=1

∫
Uα

δ

{
ζ1

(
δfδ)+ζ2•

(
δfδvδ)

}
dxdt

−
∫

Γδ

{
ζ1

(
ϱδW (φ)

)
+ζ2•

(
ϱδW (φ)vδ

)}
dxdt

−δ

∫
Γδ

{
ζ1

δh

2
|∇φ|2 +ζ2•

(δh

2
|∇φ|2vδ− φ̇δh∇φ

)}
dxdt

−δ

∫
Γδ

ζ2•(Π
T
δ v)dxdt +O(δ).

Now ∫
Γδ

∣∣ζ1

(
ϱδW (φ)

)
+ζ2•

(
ϱδW (φ)vδ

)∣∣dxdt≤C

∫
Γδ

|ζ1|dxdt=O(εδ),

and using the formula for φ̇ from the above list∫
Γδ

∣∣∣∣ζ1
δh

2
|∇φ|2 +ζ2•

(δh

2
|∇φ|2vδ− φ̇δh∇φ

)∣∣∣∣dxdt

≤C

δ

∫
Γδ

(|ζ1|+ |ζ2|)
(
|∂zΦ

0|2 +(|Λ0∂zΦ
0|+O(δ))|∂zΦ

0|
)
dxdt

≤C

∫
R

∫
Γt

∫ +zδ

−zδ

(|ζ1|+ |ζ2|)
(
|∂zΦ

0|2 +O(δ2)
)
dzdHn−1(y)dt=O(1).
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Further, since ∂zV
0 satisfies ∂zV

0∈span{ν} and (4.22) holds,∫
Γδ

∣∣ζ2•Π
T
δ vδ

∣∣dxdt

=

∫
Γδ

∣∣∣∣ζ2•
(δph

2
|∇φ|2I+δh∇φ⊗∇φ−S(ϱδ,φ,(∇vδ)

S)
)
vδ

∣∣∣∣dxdt

≤C

δ

∫
Γδ

|ζ2|
(
|∂zΦ

0|2 + |∂zV
0|+O(δ)

)
dxdt

≤C

∫
R

∫
Γt

∫ +zδ

−zδ

|ζ2|
(
|∂zΦ

0|2 +O(δ)
)
dzdHn−1(y)dt=O(1).

Hence the above integral equals

=−
2∑

α=1

∫
Uα

δ

{
ζ1

(
δfδ

)
+ζ2•

(
δfδvδ

)}
dxdt+O(εδ)+O(δ)

=−
2∑

α=1

∫
Uα

δ

{
ζ1

(
ϱδW (φ)

)
+ζ2•

(
ϱδW (φ)vδ

)}
dxdt+O(εδ)

→−
2∑

α=1

∫
Uα

{
ζ1

(
ϱαW (φα)

)
+ζ2•

(
ϱαW (φα)vα

)}
dxdt

as δ→0. �

Consequently the δ-free energy inequality (5.1) multiplied by δ converges to the fol-
lowing equality and inequality.

7.2 Theorem. The following is satisfied

∂t

( 2∑
α=1

ϱαW (φα)µµµUα

)
+div

( 2∑
α=1

ϱαW (φα)vαµµµUα

)
=−

(∫ +∞

−∞
ã(R0,Φ0)|∂zV

0•ν|2dz
)
µµµΓ ≤0.

There is a strong version of this identity.

This is essential part of the free energy inequality in the limit. To derive the strong
version of this (in)equality, we refer to [2, Theorem 2.8]. We carry out this procedure: We
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obtain for test functions ζ∈C∞
0 (U ;R)

−

⟨
∂tζ ,

2∑
α=1

ϱαW (φα)µµµUα

⟩
−

⟨
∇ζ ,

2∑
α=1

ϱαW (φα)vαµµµUα

⟩

=−
2∑

α=1

∫
Uα

W (φα)
{

∂tζϱα +∇ζ•(ϱαvα)
}

dxdt

=−
2∑

α=1

W (φα)
(
⟨∂tζ ,ϱαµµµUα ⟩+⟨∇ζ ,ϱαvαµµµUα ⟩

)
=

2∑
α=1

W (φα)⟨ζ ,∂t(ϱ
αµµµUα)+div(ϱαvαµµµUα)⟩

=(W (φ1)−W (φ2))⟨ζ ,τττµµµΓ ⟩=(W (0)−W (1))⟨ζ ,τττµµµΓ ⟩

by the first two mass equations of (4.14). Thus the equation in 7.2 becomes

(W (0)−W (1))τττµµµΓ =−
(∫ +∞

−∞
ã(R0,Φ0)|∂zV

0•ν|2dz
)
µµµΓ ≤0,

or

(W (0)−W (1))τττ =−
∫
R
ã(R0,Φ0)|∂zV

0•ν|2dz≤0,

an equation which is familiar to us from (5.9), since τττ =m0. Hence one can say that the
free energy inequality in its main part is the equipartition of energy integrated over R.

Adding functions to normalize

We mention that we have derived the free energy inequality on the surface. What is left
is the free energy inequality in the bulk regions. In these regions the free energy density
fδ for the δ-problem contains the term

1

δ
ϱδW (φ) where W (φ)→W (φα) as δ→0.

Since W (0) ̸=W (1) the value of the free energy becomes unbounded at least in one phase.
Therefore in order to proceed one has to normalize the free energy. A normalization in
the bulk regions by a constant factor times the total mass ϱδ is a common procedure and
it does not change the relevant mass and momentum balance. This is because the term

ϱδfδ ′ϱδ
−fδ ,

which enters the pressure, is invariant under a linear expression in ϱδ. Therefore the terms
Pδ and µδ in the mass and momentum equation are not changed. Note, that this is true
in the bulk regions. Therefore we define
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7.3 Definition. Consider locally in each set Uα

W̃ α(φ):=W (φ)−W (φα) ,

f̃α
δ :=

1

δ
ϱδW̃

α(φ)+δh(ϱδ)
|∇φ|2

2
+U(ϱδ,φ)=fδ−

1

δ
ϱδW (φα) .

Thus also the new function W̃ α has a minimum at φα. Note that f̃α
δ is defined only locally

in Uα.

Global test functions and multiplication by 1

For the new free energy f̃α
δ one gets the following inequality locally in Uα. For ζ∈C∞

0 (Uα),
Uα fixed, there holds∫

Uα

(
−∂tζ

(
f̃α

δ +
ϱδ

2
|vδ|2

)
−∇ζ•

(
f̃α

δ vδ +
ϱδ

2
|vδ|2vδ +ΠT

δ vδ− φ̇δh∇φ
)

−ζvδ•fδ

)
dxdt =

∫
Uα

ζgδdxdt≤ 0 provided ζ≥0.

(7.2)

This equation one obtains also, if one subtracts from (5.1) in Uα the W (φα)-multiple of
the total mass balance. Since this total mass has no production term, the original free
energy inequality is saved in the distributional sense in the domain Uα, that is, on the
right-hand side we have the production term gδ≤0. It is now clear, that we obtain the
following theorem in the limit δ→0.

7.4 Theorem. As δ→0 the solution converges pointwise in Uα:(
f̃α

δ +
ϱδ

2
|vδ|2

)
−→fα +

ϱα

2
|vα|2 ,

(
f̃α

δ +
ϱδ

2
|vδ|2

)
vδ− φ̇δh(ϱδ)∇φ−→

(
fα +

ϱα

2
|vα|2

)
vα ,

Πδ
Tvδ−→ΠαTvα vδ•fδ−→vα•fα ,

gδ−→−Dvα:Sα .

(7.3)

Here

f 1=f̂ 1(ϱ1)=U(ϱ1,0) and f2=f̂2(ϱ2)=U(ϱ2,0). (7.4)

Proof. This follows by the pointwise convergence of terms and

1

δ

(
W (φ)−W (φα)

)
→0 as δ→0

since φα=0,1. �
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As a consequence one obtains the identity in Uα

∂t(f
α +

ϱα

2
|vα|2)+div

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα

)
−vα•fα

=−Dvα:Sα≤0.

(7.5)

This is the usual free energy inequality in domains for compressible fluids.
Altogether, multiplying the equation by δ and letting δ→0 one obtains the inequality

7.2 essentially near Γ , and on the other hand by multiplying the equation by 1 and letting
δ→0 one obtains the inequality 7.5 in Uα. Therefore in the limit δ→0 we have two free
energy inequalities, that is, the following is true.

7.5 Theorem. In the limit δ→0 we obtain the following free energy inequality on Uα:

∂t(f
α +

ϱα

2
|vα|2)+div

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα

)
−vα•fα

=−Dvα:Sα≤0

and the following free energy inequality on Γ :

2∑
α=1

ϱαW (φα)(vΓ −vα)•νUα =−
∫
R
ã(R0,Φ0)|∂zV

0•ν|2dz≤0.

8 Cahn-Hilliard example

We start with the δ-version of the free energy inequality, that is (5.1), where the consti-
tutive equations of 2.7 are inserted.

Global test functions

We choose test functions in the global variables (t,x). We prove that in the free energy
identity (5.1) each term converges to a limit.

8.1 Theorem. Consider a solution (ϱδ,φ,vδ) of (1.3) for example 2.7 assuming (4.2) and
(4.4). Then as δ→0 the solution converges pointwise in the sense of distributions in U :(

fδ +
ϱδ

2
|vδ|2

)
Ln+1 −→

∑
α

(
fα +

ϱα

2
|vα|2

)
µµµUα +f sµµµΓ ,

(
(fδ +

ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
Ln+1

−→
∑

α

(
fα +

ϱα

2
|vα|2

)
vαµµµUα +f s(vΓ +vtan)µµµΓ ,
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−µδ

ϱδ

JδLn+1 −→ −
∑

α

µα

ϱα
JαµµµUα , Jα :=mα(ϱα)∇

(µα

ϱα

)
,

Πδ
TvδLn+1 −→

∑
α

ΠαTvαµµµUα +ΠsTvtanµµµΓ ,

vδ•fδLn+1 −→
∑

α

vα•fαµµµUα ,

gδLn+1 −→ −
∑

α

Dvα:SαµµµUα −
∑

α

mα(ϱα)

∣∣∣∣∇(µα

ϱα

)∣∣∣∣2µµµUα .

Here f s and Πs are as in (6.6).

Proof. We concentrate on the convergence of two terms, the flux term −µδ

ϱδ
Jδ (see (2.4))

and the dissipative term gδ (see (2.6)). The first term we write for ζ2∈C∞
0 (U ;Rn) in

distributional formulation

−
∫
U
ζ2•

(µδ

ϱδ

Jδ

)
dxdt= −

∑
α

∫
Uα

δ

ζ2•
(m0(ϱδ,φ)µδ

ϱδ

∇
(µδ

ϱδ

))
dxdt

−
∫

Γδ

ζ2•
(m0(ϱδ,φ)µδ

ϱδ

∇
(µδ

ϱδ

))
dxdt.

We obtain in Uα as δ→0

−
∫
Uα

δ

ζ2•
(m0(ϱδ,φ)µδ

ϱδ

∇
(µδ

ϱδ

))
dxdt

−→ −
∫
Uα

ζ2•
(m0(ϱ

α,φα)µα

ϱα
∇

(µα

ϱα

))
dxdt.

Considering in Γδ the inner expansion µδ=M0 +δM1 +O(δ), we obtain

−
∫

Γδ

ζ2•
(m0(ϱδ,φ)µδ

ϱδ

∇
(µδ

ϱδ

))
dxdt

=

∫
R

∫ +εδ

−εδ

∫
Γt

ζ2•
(m0(R

0,Φ0)M0

R0

1

δ
∂z

(M0

R0

)
ν +O(1)

)
·(1+O(εδ))dHn−1(y)drdt.

Since ∂z

(
M0

R0

)
=0 by 10.1, this is

=

∫
R

∫ +εδ

−εδ

∫
Γt

ζ2•O(1)(1+O(εδ))dHn−1(y)drdt

−→ 0 as δ→0.
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The second term is for ζ∈C∞
0 (U ;R)

−
∫

Γδ

ζ∇
(µδ

ϱδ

)
•Jδdxdt=−

∫
Γδ

ζ ·m0(ϱδ,φ)

∣∣∣∣∇(µδ

ϱδ

)∣∣∣∣2 dxdt

=−
∫
R

∫ +zδ

−zδ

∫
Γt

ζδm0(R
0,Φ0)

∣∣∣∣1δ ∂z

(M0

R0

)
+O(1)

∣∣∣∣2(1+O(εδ))dHn−1(y)dzdt

−→ 0 as δ→0 .

by using again 10.1. It follows by standard arguments∫
U
ζgδdxdt −→ −

∑
α

∫
Uα

ζDvα:Sαdxdt

−
∑

α

∫
Uα

ζ ·mα(ϱα)

∣∣∣∣∇(µα

ϱα

)∣∣∣∣2 dxdt.

�

From 8.1 one obtains the following immediate consequence of 2.3.

8.2 Theorem. For example 2.7 the limit free energy inequality in the distributional sense
is

∂t

(∑
α

(
fα +

ϱα

2
|vα|2

)
µµµUα +f sµµµΓ

)
+div

(∑
α

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα− µα

ϱα
Jα

)
µµµUα +f svΓµµµΓ

)
−

∑
α

vα•fαµµµUα

=−
∑

α

Dvα:SαµµµUα −
∑

α

mα(ϱα)

∣∣∣∣∇(µα

ϱα

)∣∣∣∣2µµµUα ≤ 0

From [2, Theorem 2.8] one obtains that this distributional equation is equivalent to
differential equations in Uα and a differential equation on Γ .

8.3 Theorem. For example 2.7 the distributional free energy inequality in the limit is
equivalent to the following strong equations and inequalities:

∂t

(
fα +

ϱα

2
|vα|2

)
+div

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα− µα

ϱα
Jα

)
−vα•fα

=−Dvα:Sα−mα(ϱα)

∣∣∣∣∇(µα

ϱα

)∣∣∣∣2 ≤ 0

in the domain Uα for α=1,2, and

∂Γ
t f s−f sκΓ •vΓ −

2∑
α=1

(
vα•ΠανUα −(fα +

ϱα

2
|vα|2)λα− µα

ϱα
Jα•νUα

)
= 0 (8.1)
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on the surface Γ , where λα has to be inserted from (6.7).

From the strong interface equation (8.1) we show the last kinetic equation in (4.30).
The definitions in (6.7) concerning ϱ, v, λα, and λ imply∑

α

(fα +
ϱα

2
|vα|2)λα=−λ(f 2−f1).

As at the end of section 6,

f sκΓ •vΓ +
∑

α

vα•ΠανUα =λγγγκΓ •ν ,

and ∂Γ
t f s=0, since f s=γγγ=const (see [17, Lemma 28]). Plugging this into (8.1) we obtain

2∑
α=1

µα

ϱα
Jα•νUα =λ

(
γγγκΓ •ν +(f2−f 1)

)
.

Further, using 10.1 and the last identity in (4.32)

2∑
α=1

µα

ϱα
Jα•νUα =−µ

ϱ

(
J2−J1

)
•ν=µλ,

so that µ=γγγκΓ •ν +(f2−f 1), see (4.30).

9 Cahn-Hilliard example with degenerate mobility

Here we are dealing with example 2.8. As in the previous section we consider the consti-
tutive equations of 2.8 and identify the limit equations.

Global test functions

We choose test functions in the global variables (t,x). We prove that in the free energy
identity (5.1) each term converges to a limit.

9.1 Theorem. Consider a solution (ϱδ,φ,vδ) of (1.3) for example 2.8 assuming (4.2) and
(4.4). Then as δ→0 the solution converges pointwise in the sense of distributions in U :(

fδ +
ϱδ

2
|vδ|2

)
Ln+1 −→

∑
α

(
fα +

ϱα

2
|vα|2

)
µµµUα +f sµµµΓ ,

(
(fδ +

ϱδ

2
|vδ|2)vδ− φ̇δh(ϱδ)∇φ

)
Ln+1

−→
∑

α

(
fα +

ϱα

2
|vα|2

)
vαµµµUα +f s(vΓ +vtan)µµµΓ ,
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−µδ

ϱδ

JδLn+1 −→ −µ

ϱ
JsµµµΓ , Js :=m̂(ϱ)∇Γ

(µ

ϱ

)
,

Πδ
TvδLn+1 −→

∑
α

ΠαTvαµµµUα +ΠsTvtanµµµΓ ,

vδ•fδLn+1 −→
∑

α

vα•fαµµµUα ,

gδLn+1 −→ −
∑

α

Dvα:SαµµµUα −m̂(ϱ)

∣∣∣∣∇Γ
(µ

ϱ

)∣∣∣∣2µµµΓ .

Here ϱ and µ are defined in (4.34) and m̂ in (4.35).

Proof. We concentrate on the convergence of two terms, that are −(µδ/ϱδ)Jδ and gδ.

−
∫
U
ζ
µδ

ϱδ

Jδdxdt=−
∑

α

∫
Uα

δ

ζ
µδ

ϱδ

mδ∇
(µδ

ϱδ

)
dxdt−

∫
Γδ

ζ
µδ

ϱδ

mδ∇
(µδ

ϱδ

)
dxdt

It holds

−
∑

α

∫
Uα

δ

ζ
µδ

ϱδ

mδ∇
(µδ

ϱδ

)
dxdt −→ 0

and considering µδ=M0 +δM1 +O(δ) (see (4.4)) and ∂z

(
M0

R0

)
=0 by theorem 11.1,

−
∫

Γδ

ζ
µδ

ϱδ

mδ∇
(µδ

ϱδ

)
dxdt=−

∫
Γδ

ζ
µδ

ϱδ

1

δ
m0(ϱδ)V (φ)∇

(µδ

ϱδ

)
dxdt

=−
∫
R

∫ +zδ

−zδ

∫
Γt

ζδ
(M0

R0

1

δ
m0(R

0)V (Φ0)
1

δ
∂z

(M0

R0

)
+

M0

R0

1

δ
m0(R

0)V (Φ0)∇Γ
(M0

R0

)
+O(1)

)
·(1+O(εδ))dHn−1(y)dzdt

=−
∫
R

∫ +zδ

−zδ

∫
Γt

ζ
(M0

R0
m0(R

0)V (Φ0)∇Γ
(M0

R0

)
+O(δ)

)
·(1+O(εδ))dHn−1(y)dzdt

−→ −
∫
R

∫
Γt

ζ
µ

ϱ
m0(ϱ)

(∫ +∞

−∞
V (Φ0)dz

)
∇Γ

(µ

ϱ

)
dHn−1(y)dt as δ→0

=−
∫
R

∫
Γt

ζ
µ

ϱ
m̂(ϱ)∇Γ

(µ

ϱ

)
dHn−1(y)dt .
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Considering

−
∫

Γδ

ζ∇
(µδ

ϱδ

)
•Jδdxdt=−

∫
Γδ

ζ∇
(µδ

ϱδ

)
•
1

δ
m0(ϱδ)V (φ)∇

(µδ

ϱδ

)
dxdt

=−
∫
R

∫ +zδ

−zδ

∫
Γt

ζδ
(1

δ
m0(R

0)V (Φ0)+O(1)
)∣∣∣∣1δ ∂z

(M0

R0

)
+∇Γ

(M0

R0

)
+O(1)

∣∣∣∣2
·(1+O(εδ))dHn−1(y)dzdt

−→ −
∫
R

∫
Γt

ζm0(ϱ)
(∫ +∞

−∞
V (Φ0)dz

) ∣∣∣∣∇Γ
(µ

ϱ

)∣∣∣∣2 dHn−1(y)dt as δ→0

=−
∫
R

∫
Γt

ζm̂(ϱ)

∣∣∣∣∇Γ
(µ

ϱ

)∣∣∣∣2 dHn−1(y)dt ,

it follows∫
U
ζgδdxdt −→ −

∑
α

∫
Uα

ζDvα:Sαdxdt−
∫
R

∫
Γt

ζm̂(ϱ)

∣∣∣∣∇Γ
(µ

ϱ

)∣∣∣∣2 dHn−1(y)dt .

�

From 9.1 one obtains the following

9.2 Theorem. For example 2.8 the limit free energy inequality in the distributional sense
is

∂t

(∑
α

(
fα +

ϱα

2
|vα|2

)
µµµUα +f sµµµΓ

)
+div

(∑
α

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα

)
µµµUα +

(
f svΓ −

µ

ϱ
Js

)
µµµΓ

)
−

∑
α

vα•fαµµµUα

=−
∑

α

Dvα:SαµµµUα −m̂(ϱ)

∣∣∣∣∇(µ

ϱ

)∣∣∣∣2µµµΓ ≤ 0

From [2, Theorem 2.8] one obtains that this distributional equation is equivalent to
differential equations in Uα and a differential equation on Γ .

9.3 Theorem. For example 2.8 the distributional free energy inequality in the limit is
equivalent to the following strong equations and inequalities:

∂t

(
fα +

ϱα

2
|vα|2

)
+div

((
fα +

ϱα

2
|vα|2

)
vα +ΠαTvα

)
−vα•fα

=−Dvα:Sα ≤ 0 in Uα for α=1,2,
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and

∂Γ
t f s−f sκΓ •vΓ −

2∑
α=1

(
vα•ΠανUα −(fα +

ϱα

2
|vα|2)λα

)
−divΓ

(µ

ϱ
Js

)
=−Js•∇Γ

(µ

ϱ

)
≤ 0 on the surface Γ ,

where λα are as in (6.7).

That these identities are indeed satisfied, follows from the properties of f s and Js.

10 Appendix (Proof of Theorem 4.9)

It is the purpose of this section to give a proof of the limit equations for example 2.7.
Here we prove the statement about the mass conservation, the momentum equation has
already been proven in the general part, see 4.2. The mass conservation for (ϱ1

δ ,ϱ
2
δ) or

equivalently for (ϱδ,φ) in (1.3) is

∂tϱδ +div(ϱδvδ)=0 ,

∂t(ϱδφ)+div(ϱδφvδ−Jδ)=0 , Jδ=mδ∇
(µδ

ϱδ

)
,

µδ=
δfδ

δφ
=

1

δ
ϱδW

′(φ)−δdiv(h(ϱδ)∇φ)+U′φ(ϱδ,φ) .

The distributional formulation of this reads for ζ∈C∞
0 (U ;R)∫

U

(
∂tζϱδ +∇ζ•(ϱδvδ)

)
dLn+1=0 ,∫

U

(
∂tζ(ϱδφ)+∇ζ•(ϱδφvδ−Jδ)

)
dLn+1=0 ,∫

U
ζ
(
µδ−

1

δ
ϱδW

′(φ)+δdiv(h(ϱδ)∇φ)−U′φ(ϱδ,φ)
)

dLn+1=0 .

(10.1)

We consider two classes of test functions in (10.1). The first choice gives as a result an
ordinary differential equation which one has to solve in the inner variables. This result is
then used in the second choice of the test functions. These test functions are functions
of the global variables. Therefore one gets the equations for the outer expansion, and
in addition a distributional equation across the interface. We show the following results
when δ→0. The first result is the 1

δ
-term at the boundary.

10.1 Theorem. Assume (4.2) and (4.4). Then for (t,y)∈Γ we have in local coordinates

∂z

(M0

R0

)
=0 for all z∈R ,

R0W ′(Φ0)−∂z(h(R0)∂zΦ
0)=0 for all z∈R .
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This theorem is the version of the usual theorem on the zeroth order Φ0 of the phase
field. It is necessary to show the following result.

10.2 Theorem. Assume (4.2) and (4.4). Then as δ→0 in the sense of distributions the
solution (as distribution) converges pointwise to

ϱδφLn+1−→ϱ2µµµU2 , ϱδφvδLn+1−→ϱ2v2µµµU2 ,

ϱδLn+1−→ϱ1µµµU1 +ϱ2µµµU2 , ϱδvδLn+1−→ϱ1v1µµµU1 +ϱ2v2µµµU2 ,

JδLn+1−→J1µµµU1 +J2µµµU2 , Jα :=mα(ϱα)∇
(µα

ϱα

)
.

Therefore the limit equations are

∂t(ϱ
1µµµU1 +ϱ2µµµU2)+div(ϱ1v1µµµU1 +ϱ2v2µµµU2)=0 ,

∂t(ϱ
2µµµU2)+div

(
ϱ2v2µµµU2 −m1(ϱ

1)∇
(µ1

ϱ1

)
µµµU1 −m2(ϱ

2)∇
(µ2

ϱ2

)
µµµU2

)
=0.

Local test functions

With the choice of a local test function ζ=ξ with a C∞
0 -function ξ around the free bound-

ary we derive the well known first equation of the inner expansion, see 10.1. This is the
1
δ
-term in (10.1). Explicitly we choose

ζ(t,x)=ξ(t,y,z), x=y+δzν(t,y), (10.2)

where (t,y)∈Γ , z∈R, and ν=νU1 . The support of z 7→ξ(t,y,z) is contained in a fixed
interval [−zξ,zξ], so that [−zξ,zξ]⊂[−zδ,zδ] for small δ>0. We compute for the derivatives

∂tζ=∂Γ
t ξ− 1

δ
vΓ •ν∂zξ+O(δ) ,

∇ζ=∇Γ ξ+
1

δ
∂zξν +O(δ) ,

(10.3)

and we get, if δ is small,∫
U

(
∂tζ ·(ϱδφ)+∇ζ•(ϱδφvδ−Jδ)

)
dxdt

=

∫
R

∫ +εδ

−εδ

{∫
Γt

(
∂Γ

t ξ ·ϱδφ+∇Γ ξ•(ϱδφvδ−Jδ)+
1

δ
∂zξ ·

(
ϱδφ(vδ−vΓ )−Jδ

)
•ν

+O(δ)Xsuppξ

)
(1+O(|r|))dHn−1(y)

}
drdt
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=

∫
R

∫ +zδ

−zδ

{∫
Γt

(
δ
(
∂Γ

t ξ ·ϱδφ+∇Γ ξ•(ϱδφvδ−Jδ)
)
+∂zξ ·

(
ϱδφ(vδ−vΓ )−Jδ

)
•ν

+O(δ2)Xsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=

∫
R

∫ +zδ

−zδ

{∫
Γt

(
∂zξ

(
−mδ∇

(µδ

ϱδ

))
•ν +O(1)Xsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=−1

δ

∫
R

∫ +zδ

−zδ

{∫
Γt

(
∂zξ ·m0(R

0,Φ0)∂z

(M0

R0

)
+O(δ)Xsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=−1

δ

∫
R

∫ +zδ

−zδ

∫
Γt

∂zξm0(R
0,Φ0)∂z

(M0

R0

)
dHn−1(y)dzdt + O(1) .

Then it follows for δ↘0 that the 1
δ
-term vanishes. Since ξ is arbitrary one gets the first

identity in theorem 10.1. Further

0=

∫
U
ζ
(
µδ−

1

δ
ϱδW

′(φ)+δdiv(h(ϱδ)∇φ)−U′φ(ϱδ,φ)
)
dxdt

=

∫
R

∫ +εδ

−εδ

{∫
Γt

ξ
(
µδ−

1

δ
ϱδW

′(φ)+δdiv(h(ϱδ)∇φ)−U′φ(ϱδ,φ)
)

(1+O(|r|))dHn−1(y)
}

drdt

=

∫
R

∫ +zδ

−zδ

{∫
Γt

(
ξ
(
−R0W ′(Φ0)+∂z(h(R0)∂zΦ

0)+O(δ)χsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ξ
(
−R0W ′(Φ0)+∂z(h(R0)∂zΦ

0)dHn−1(y)dzdt+O(δ)

Since ξ is arbitrary one gets the second identity in theorem 10.1.

Global test functions

We now choose test functions as function of (t,x). Since we claim that the terms converge
in the sense of distributions, we have to choose independent test functions ζ1∈C∞

0 (U ;R)
and ζ2∈C∞

0 (U ;Rn). We obtain∫
U

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt

=

∫
U2

δ

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt+

∫
U1

δ

ζ2•(−Jδ)dxdt

+

∫
Γδ

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt + O(1) .

(10.4)
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Since ϱδ and φ are bounded and pointwise convergent with respect to the Lebesgue mea-
sure, we obtain further∫

U2
δ

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt

−→
∫
U2

(
ζ1ϱ

2 +ζ2•(ϱ
2v2−m2(ϱ

2)∇
(µ2

ϱ2

)
)
)
dxdt∫

U1
δ

ζ2•(−Jδ)dxdt−→
∫
U1

ζ2•(−m1(ϱ
1)∇

(µ1

ϱ1

)
)dxdt∫

Γδ

(
ζ1ϱδφ+ζ2•(ϱδφvδ)

)
dxdt=O(εδ)−→ 0

for δ↘0. And the Jδ-term converges, due to the first identity of theorem 10.1, to∫
Γδ

ζ2Jδdxdt=

∫
Γδ

ζ2mδ∇
(µδ

ϱδ

)
dxdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ζ2

(
m0(R

0,Φ0)∂z

(M0

R0

)
+O(δ)

)
·(1+O(εδ))dHn−1(y)dzdt

−→ 0

which is the result of theorem 10.2.

11 Appendix (Proof of Theorem 4.11)

It is the purpose of this section to give a proof of the limit equations for example 2.8.
Here we prove the statement about the mass conservation, the momentum equation has
already been proven in the general part, see 4.2. The mass conservation for (ϱ1

δ ,ϱ
2
δ) or

equivalent for (ϱδ,φ) in (1.3) is

∂tϱδ +div(ϱδvδ)=0 ,

∂t(ϱδφ)+div(ϱδφvδ−Jδ)=0 ,

Jδ :=mδ∇
(µδ

ϱδ

)
, mδ=

1

δ
m0(ϱδ)V (φ) with V (φ)=φ2(1−φ)2 ,

µδ=
δfδ

δφ
=

1

δ
ϱδW

′(φ)−δdiv(h(ϱδ)∇φ)+U′φ(ϱδ,φ) .

The distributional formulation of this reads for ζ∈C∞
0 (U ;R)∫

U

(
∂tζϱδ +∇ζ•(ϱδvδ)

)
dLn+1=0 ,∫

U

(
∂tζ(ϱδφ)+∇ζ•(ϱδφvδ−Jδ)

)
dLn+1=0 ,∫

U
ζ
(
µδ−

1

δ
ϱδW

′(φ)+δdiv(h(ϱδ)∇φ)−U′φ(ϱδ,φ)
)

dLn+1=0 .

(11.1)
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11.1 Theorem. Assume (4.2) and (4.4). Then for (t,y)∈Γ we have in local coordinates

∂z

(M0

R0

)
=0 for all z∈R ,

R0W ′(Φ0)−∂z(h(R0)∂zΦ
0)=0 for all z∈R .

This theorem is the version of the usual theorem on the zeroth order Φ0 of the phase
field. It is necessary to show the following result.

11.2 Theorem. Assume (4.2) and (4.4). Then as δ→0 in the sense of distributions the
solution (as distribution) converges pointwise to

ϱδφLn+1−→ϱ2µµµU2 , ϱδφvδLn+1−→ϱ2v2µµµU2 ,

ϱδLn+1−→ϱ1µµµU1 +ϱ2µµµU2 , ϱδvδLn+1−→ϱ1v1µµµU1 +ϱ2v2µµµU2 ,

JδLn+1−→JsµµµΓ , Js :=m̂(ϱ)∇Γ
(µ

ϱ

)
,

where

m̂(ϱ)=

∫ +∞

−∞
m0(R

0)V (Φ0)dz=
m0(ϱ)

ϱ

∫ 1

0

V (s)√
2(W (s)−W (0))

ds .

Therefore the limit equations are

∂t(ϱ
1µµµU1 +ϱ2µµµU2)+div(ϱ1v1µµµU1 +ϱ2v2µµµU2)=0 ,

∂t(ϱ
2µµµU2)+div(ϱ2v2µµµU2 −m̂(ϱ)∇Γ

(µ

ϱ

)
µµµΓ )=0 .

Local test functions

With the choice of a local test function ζ=ξ with a C∞
0 -function ξ around the free bound-

ary we derive the well known first equation of the inner expansion, see 11.1. This is the
1
δ
-term in (11.1). Explicitly we choose

ζ(t,x)=ξ(t,y,z), x=y+δzν(t,y),

where (t,y)∈Γ , z∈R, and ν=νU1 . The support of z 7→ξ(t,y,z) is contained in a fixed
interval [−zξ,zξ], so that [−zξ,zξ]⊂[−zδ,zδ] for small δ>0. We compute for the derivations

∂tζ=∂Γ
t ξ− 1

δ
vΓ •ν∂zξ+O(δ) ,

∇ζ=∇Γ ξ+
1

δ
∂zξν +O(δ) .
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and we get, if δ is small,∫
U

(
∂tζ(ϱδφ)+∇ζ•(ϱδφvδ−Jδ)

)
dxdt

=

∫
R

∫ +εδ

−εδ

{∫
Γt

(
∂Γ

t ξ ·ϱδφ+∇Γ ξ•(ϱδφvδ−Jδ)+
1

δ
∂zξ ·(ϱδφ(vδ−vΓ )−Jδ)•ν

+O(δ)χsuppξ

)
(1+O(|r|))dHn−1(y)

}
drdt

=

∫
R

∫ +zδ

−zδ

{∫
Γt

(
δ(∂Γ

t ξ ·ϱδφ+∇Γ ξ•(ϱδφvδ−Jδ))+∂zξ ·(ϱδφ(vδ−vΓ )−Jδ)•ν

+O(δ2)χsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=

∫
R

∫ +zδ

−zδ

{∫
Γt

(
∂zξ(−mδ∇

(µδ

ϱδ

)
)•ν

+O(1)χsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=− 1

δ2

∫
R

∫ +zδ

−zδ

{∫
Γt

(
∂zξ ·m0(R

0)V (Φ0)∂z

(M0

R0

)
+O(δ)χsuppξ

)
(1+O(εδ))dHn−1(y)

}
dzdt

=− 1

δ2

∫
R

∫ +zδ

−zδ

∫
Γt

∂zξ m0(R
0)V (Φ0)∂z

(M0

R0

)
dHn−1(y)dzdt+O(1) .

Then it follows for δ↘0 that the 1
δ
-term vanishes. Since ξ is arbitrary one gets the first

identity in theorem 11.1. The second identity of 11.1 follows as in theorem 10.1.

Global test functions

We now choose test functions as function of (t,x). Since we claim that the terms converge
in the sense of distributions, we have to choose independent test functions ζ1∈C∞

0 (U ;R)
and ζ2∈C∞

0 (U ;R). We obtain∫
U

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt∫

U2
δ

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt+

∫
U1

δ

ζ2•(−Jδ)dxdt

+

∫
Γδ

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt+O(1) .

(11.2)

Since ϱδ and φ are bounded and pointwise convergent with respect to the Lebesgue mea-
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sure, we obtain further∫
U2

δ

(
ζ1ϱδφ+ζ2•(ϱδφvδ−Jδ)

)
dxdt−→

∫
U2

(
ζ1ϱ

2 +ζ2•(ϱ
2v2)

)
dxdt∫

U1
δ

ζ2•(−Jδ)dxdt=O(εδ)−→0∫
Γδ

(
ζ1ϱδφ+ζ2•(ϱδφvδ)

)
dxdt=O(εδ)−→0

for δ→0. And the Jδ-term converges, due to identity ∂z

(
M0

R0

)
=0 (the first identity of

theorem 11.1),∫
Γδ

ζ2•Jδdxdt=

∫
Γδ

ζ2mδ∇
(µδ

ϱδ

)
dxdt=

∫
Γδ

ζ2
1

δ
m0(ϱδ)V (φ)∇

(µδ

ϱδ

)
dxdt

=

∫
R

∫ +zδ

−zδ

∫
Γt

ζ2

(
m0(R

0)V (Φ0)∇Γ
(M0

R0

)
+O(δ)

)
·(1+O(εδ))dHn−1(y)dzdt

−→
∫
R

∫
Γt

ζ2

(∫ +∞

−∞
m0(R

0)V (Φ0)∇Γ
(M0

R0

)
dz

)
dHn−1(y)dt .

That means, because the first identity of theorem 11.1,∫ +∞

−∞
m0(R

0)V (Φ0)∇Γ
(M0

R0

)
dz=

(∫ +∞

−∞
m0(R

0)V (Φ0)dz

)
∇Γ

(µ

ϱ

)
.

The factor we can rewrite∫ +∞

−∞
m0(R

0)V (Φ0)dz =

∫ +∞

−∞

m0(R
0)V (Φ0)

∂zΦ0
∂zΦ

0dz

=
m0(ϱ)

ϱ

∫ 1

0

V (s)√
2(W (s)−W (0))

ds ,

by transformation s=Φ0(z) and replacing

∂zΦ
0=

√
2

R0

h(R0)
(W (Φ0)−W (0))

coming from (5.10).
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