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Abstract. In this paper we are concerned with the dynamics of liquid crystals with a non-
symmetric part of the pressure tensor. The non-symmetric form we have already treated
in the paper [2]. Here we are dealing with the fact that the liquid crystal is embedded in
a fluid with non-symmetric velocity gradient. This has the effect that the molecules are
turned by the antisymmetric part (Dv)A, and this in addition to the movement induced
by the director d. Therefore there are two reasons for the general dynamics, one reason
from the outside behaviour of the velocity v and another reason is by the near neighbour
behaviour done by the form of the molecules, caused by the director d. Hence we are able
to combine the model of Grad and the theory of Ericksen & Leslie. We think that this
paper gives the framework for other treatments of a system of spin equations.
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1 Introduction
Mathematically it is clear that models for liquid crystals have the property that the
pressure tensor Π is non-symmetric. The angular momentum played an essential role
from the very beginning, it is the natural way for mathematical models of liquid crystals.
With the spin equation it provides the additional equation which describes the standard
features of the material. In this paper we are concerned with several effects of the spin
which will determine the microscopic behaviour of the molecules. They come from the
surrounding and from the inside of the material, so they lead to different contributions of
the antisymmetric spin.
That is, we assume that the mass-momentum system for (ϱ, v),

∂tϱ+ div(ϱv) = 0 ,

∂t(ϱv) + div(ϱvvT +Π) = f ,
(1.1)

is the basis for our final system (1.7). It assumes that the pressure tensor Π has non-
symmetric contributions. The mass-momentum system implies for the orbital angular
momentum L := (x− ξ) ∧ ϱ(v − ξ̇) the equation

∂tL + div
(
L vT + (x− ξ) ∧ Π

)
= −2ΠA + (x− ξ) ∧

(
f − ϱξ̈

)
, (1.2)

where this is true for an observer which is at a position t 7→ ξ(t), see Section 2. Therefore,
this equation is satisfied for all observers. A form which writes this equation as a general
rule is the equation of angular momentum for the antisymmetric tensor J

∂tJ + div
(
J vT + (x− ξ) ∧ Π+ Σ

)
= (x− ξ) ∧ (f − ϱξ̈) + Γ (1.3)

where Σ is the “couple stress density” and Γ the “intrinsic body couple density”, see the
book of DeGroot & Mazur [4 : Chap.XII §1(3)] and also the paper of H.Grad [13 : (4.13)]
(L ; M , Π ; P ), for more see Alt [1 : Sec.II.6]. In applications of ferrofluids in a
magnetic field Rinaldi & Zahn [20 : (1.3), (1.9)] (Γ ; I, magnetization M, magnetic field
H) call I the “body-couple density field” which they set to I = µoM×H.
Now, the spin is defined by S := J −L and it satisfies the difference of (1.3) and (1.2),
which is the total spin balance equation

∂tS + div(S vT + Σ) = 2ΠA + Γ . (1.4)

Since J and L have the same transformation rule, see e.g. [1 : Sec.II.6], the spin S is
an antisymmetric objective tensor. (And if S = 0 in (1.4) without couple terms, then
Cauchy’s second law of motion is satisfied, that is, Π is symmetric.)
We can consider, quite general, a situation with several spins Sm satisfying

∂tSm + div(Sm v
T + Σm) = 2ΠA

m + Γm

with S =
∑

mSm , ΠA =
∑

mΠA
m ,

(1.5)

and similar equations for Σm and Γm. Now, the specific spins S sp
m with Sm = ϱS sp

m are
given by the rotation axis ωm ∈ R3, that is, S sp

m z = ωm×z for z ∈ R3, or in other notation
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ωm is defined by ωm :=
(
e3·S sp

m e2, e1·S sp
m e3, e2·S sp

m e1
)
, see [1 : IV.17.2], and we take

the sum of these rotations ωm. Then the rotation ω of the antisymmetric matrix S sp is
given by the sum ω =

∑
mωm. So it makes clear what consequences a sum of the spin

S sp =
∑

mS sp
m has.

In this paper we consider a fluid (ϱ, v) and we assume that the spin consists of two subspins

S = S0 + S1 (1.6)

which are related to a microscopic small object at the point (t, x). The first spin is
stimulated by the speed v, i.e. more precisely by (Dv)A hence S sp

0 = µ((Dv)A − Ω), like
Grad did (see [2 : under (9.9)]), here Ω is the externally viewed quantity that produces
the internal objective spin S0 = ϱS sp

0 . The second spin is due to a characteristic director
d with length ℓ, that is S1 = ϱ d ∧ Ad with an antisymmetric objective matrix A, like
Leslie & Ericksen did, for more info we refer to the paper [2].
Therefore, we consider the following system which contains the mass and momentum
equation with the balance laws for the two subspins, and it reads, together with the total
energy equation,

∂tϱ+ div(ϱv) = 0 ,

∂t(ϱv) + div(ϱvvT +Π) = f , ΠA =ΠA
0 +ΠA

1 ,

∂tSm + div(Sm v
T + Σm) = 2ΠA

m + Γm =: Hm , m = 0, 1,

∂te+ div q̃ = v·f +Dv··ΠA =: g̃ ,

e =
ϱ

2
|v|2 + ϱ

2

∑
m

τm|S sp
m |2 + ε , q̃ =ΠT v +

∑
m

τmS sp
m··Σm + q .

(1.7)

With (1.6) together with Σ := Σ0 +Σ1 and Γ := Γ0 +Γ1 we get the equation of the total
spin (1.4). The total energy equation deserves a special remark. The contributions of the
total energy except the kinetic energy are objective scalars. Therefore the transformation
rule for e is the same rule of the kinetic energy and it is e◦Y = 1

2
|Ẋ|2ϱ∗+ϱ∗Ẋ·(Qv∗)+ e∗,

if Y is the observer transformation, see [1 : (II 3.32)]. This determines the rules for the
flux q̃ and the right side g̃ of the equation for e, see [1 : (II 3.5)]. By [1 : (II 3.38)] we have
the identity g̃ = v·f + Dv··ΠA + g with an objective scalar g. We set g = 0 because we
have to satisfy the energy principle. The total energy could be generalized to have a term
S sp

m··τττmS sp
m with a symmetric positive definite 4-tensor τττm, but we restrict ourselves with

a scalar τm and τm|S sp
m |2.

There is a property which solutions of system (1.7) have to satisfy, it is the entropy
inequality, which is an encoding of the local behavior of the molecules in consideration.
It means that for the entropy production

σ := ∂tη + divψ ≥ 0 (1.8)

has to hold, where η is the entropy and ψ the entropy flux. We mention that this inequality
is the reason why η has to be an objective scalar, that is η◦Y = η∗, where Y :R4 → R4 is
the observer transformation and η and η∗ are the entropies for the two observers. In this
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paper we are devoted to liquid crystals, which are defined by a local director d :R×R3 → R
and we assume that η depends on the following assumption

η = η̂(ϱ, ε, d,Dd) , (1.9)

where η̂ is an objective constitutive function, that is η̂(ϱ, ε, d,Dd) = η̂(ϱ∗, ε∗, d∗,Dd∗).
Further d is an objective vector and consequently Dd an objective matrix. Now, that η is
an objective scalar has a consequence:

1.1 Condition. That η is an objective scalar with (1.9) leads to the fact that

η ′d⊗d+ η ′Dd (Dd)
T +(η ′Dd)

T Dd is symmetric.

This is equivalent to
0 = η ′d·Bd+ η ′Dd··(BDd+DdBT)

for every antisymmetric matrix B.

Proof. Since η in an objective scalar η∗ = η◦Y it has the consequence that

η̂(ϱ∗, ε∗, d∗,Dd∗) = η∗ = η◦Y
= η̂(ϱ◦Y, ε◦Y, d◦Y,Dd◦Y ) = η̂(ϱ∗, ε∗, Qd∗, QDd∗QT) .

Here ϱ and ε are objective scalars. Hence

η̂(ϱ∗, ε∗, d∗,Dd∗) = η̂(ϱ∗, ε∗, Qd∗, QDd∗QT) (1.10)

for every value ϱ∗, ε∗, d∗, Dd∗. This is true for all orthogonal matrices Q with determinant
1. For this matrix take s 7→ Qs, where s is a real variable and

d

ds
Qs = AsQs for s ≥ 0 and Q0 = Id

with a given antisymmetric matrix As. Then by (1.10)

η̂(ϱ∗, ε∗, d∗,Dd∗) = η̂(ϱ∗, ε∗, Qsd
∗, QsDd

∗Qs
T)

that is

0 =
d

ds
η̂(ϱ∗, ε∗, Qsd

∗, QsDd
∗Qs

T)

= η̂ ′d(...)·(AsQsd
∗) + η̂ ′Dd(...)··(AsQsDd

∗Qs
T +QsDd

∗ (AsQs)
T )

.

In particular for s = 0

0 = η̂ ′d(ϱ
∗, ε∗, d∗,Dd∗)·(A0d

∗) + η̂ ′Dd(ϱ
∗, ε∗, d∗,Dd∗)··(A0Dd

∗ +Dd∗AT
0

)
= A0··(η ′d⊗d+ η ′Dd (Dd)

T +(η ′Dd)
T Dd

)
.

Since A0 is an arbitrary antisymmetric matrix the assertion follows.
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With these frameworks we are able to prove the Main theorem 3.2, where we show that
the entropy principle is true and that the entropy production σ satisfies the following
residual inequality (3.16)

0 ≤ σ = η ′εD(v − vξ)··(P −ΠS)

+∇η ′ε·q − η ′ετ0
(
DS sp

0 ··Σ0 + S sp
0 ··(2ΠA

0 + Γ0)
)

+d
′·(δηδd + 2τ1

(
η ′ε(2Π

A
1 + Γ1)− div(η ′εΣ1)

)
d
)
,

(1.11)

where the pressure P is defined in (3.15), which is a tensor. For Γm see (2.5).
In this paper we then concentrate on the description of this two spin case, in which we
have combined the Grad theory with the theory of Leslie & Ericksen. The general residual
inequality (1.11) is applied to the case that, see (3.18), for Σ1 and H1 := 2ΠA

1 + Γ1 the
tensor π and the vector g are introduced, and for H0 the equation (2.6) is used, which
yield the Final theorem 3.5. In this situation we obtain in system (1.7)

∂tϱ+ div(ϱv) = 0 ,

∂t(ϱv) + div(ϱvvT +Π) = f , ΠA =ΠA
0 +ΠA

1 ,

2ΠA
m = Hm − Γm for m = 0, 1,

(1.12)

where
H0 =

(
ϱ(S sp

0 )
◦ − H0

0

)
+ divΣ0 ,

H1 = d ∧ g +
∑
j

∂jd ∧ π•j , d ∧ (ϱd
′′
+ divπ − g) = 0 ,

(1.13)

and Γ0 and Γ1 have to be inserted by concrete applications, where additional equations
corresponding to the application are necessary, and therefore the entropy has to be gen-
eralized to more variables. In particular, it is thought about an application with Maxwell
equations.

2 The virtual body
We define the orbital angular momentum L = r∧p by a matrix consisting of the relative
position r = x− ξ and the relative momentum p = ϱ(v − ξ̇)

L = (x− ξ) ∧ ϱ(v − ξ̇) ,

where t 7→ ξ(t) is the reference orbit, hence this is an observer independent formulation.
Therefore one says that the angular momentum is done by a virtual body at the point
t 7→ ξ(t). At the point ξ(t) a special observer can be. Hence we have to take a relative
movement, that is if necessary, we subtract from the quantities given by the measurements
the quantities of the virtual body.
For the reference orbit not only the position ξ(t) is required, but also how the virtual
observer turns around its body, that means its rotation Aξ(t):
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2.1 The virtual body. The trajectory of the virtual body is given by t 7→ ξ(t), and the
antisymmetric matrix t 7→ Aξ(t) describes the rotation part of the velocity of the virtual
body, and is given by

vξ(t, x) := ξ̇(t) + Aξ(t)(x− ξ(t)) . (2.1)

This means Dvξ = Aξ and that Aξ satisfies the transformation formula

Aξ◦Y = Q̇QT +QA∗
ξQ

T (2.2)

as derivative of a velocity. The speed of this body in space is t 7→ ξ̇(t) = vξ(t, ξ(t)).

This virtual body has the advantage that with the antisymmetric matrix Aξ the quantities
can be written in an objective manner.
This is especially true for the quantities around the spin equation, which is for each
m = 0, 1

∂tSm + div(Sm v
T + Σm) = 2ΠA

m + Γm =: Hm , (2.3)

where the spin Sm is an antisymmetric objective tensor, i.e. Sm ◦Y = QS ∗
mQ

T. The
spin equation should be an invariant system, see [1 : (I.5.13) Invariance of the divergence
system] and [1 : IV.17.5 Lemma]. The spin equation is an invariant system if Σm is an
objective 3-tensor and Hm satisfies the transformation rule

Hm◦Y = Q̇S ∗
mQ

T +QS ∗
m Q̇

T
+QH∗

mQ
T . (2.4)

If we define

H0
m := AξSm + SmAξ

T ,

Hm = H0
m +Hm , Γm = H0

m + Γm , Hm = 2ΠA
m + Γm ,

(2.5)

then H0
m has the property (2.4), so that Hm is an objective tensor.

If we define the specific spin S sp
m by Sm = ϱS sp

m then we get for the spin equation (2.3)
by using the mass equation

ϱ(S sp
m )

◦
+ divΣm = 2ΠA

m + Γm = Hm

or
(
ϱ(S sp

m )
◦ − H0

m

)
+ divΣm = Hm = 2ΠA

m + Γm .
(2.6)

We finally show the advantage of Aξ with a computation of the constant τ1.

2.2 Lemma. If the fluid particles are given by a bar B of length ℓ we get for the relative
velocity and for the spin

|uB|2 =
1

12
|Amicd|2 , |S sp

1B|
2 =

2ℓ2

122
|Amicd|2 ,

where Amic is the microscopic antisymmetric matrix, resulting in

τ1 =
6

ℓ2
if |uB|2 = τ1|S sp

1B|
2 .
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Proof. The representation for the specific spin for a 3-dimensional bar (see e.g. [1 : IV.17.4])

B̄t := {xB(t) + x′ ∈ R3 ; |x′·e3| < ℓ
2
, |x′·e1| < r

2
, |x′·e2| < r

2
}

with position depending basis {e1, e2, e3}, ℓe3 = d, is given by

S̄ sp
1 =

1

L3(B̄t)

∫
B̄t

x′ ∧ Amicx
′ dL3(x′) =

ℓ2

12
e3 ∧ Amice3 +

r2

12
(e1 ∧ Amice1 + e2 ∧ Amice2) ,

where t 7→ Amic(t) is the antisymmetric objective matrix related to the self-rotation of
the bar. Now we approximate the 1-dimensional stick B from the 3-dimensional bar B̄
by letting r → 0 and we get

S sp
1B =

ℓ2

12
e3 ∧ Amice3 ,

it follows
|S sp

1B|
2 =

∣∣∣ ℓ2
12
e3 ∧ Amice3

∣∣∣2 = 2ℓ4

122
|Amice3|2 .

We calculate analogously the kinetic energy of B by

|ūB|2 =
1

L3(B̄t)

∫
B̄t

|Amicx
′|2 dL3(x′) =

1

ℓr2
∑
l,k

∫
B̄t

x′lx
′
k dL

3(x′) · (Amicel)·(Amicek)

=
ℓ2

12
|Amice3|2 +

r2

12
(|Amice1|2 + |Amice2|2)

and letting r → 0

|uB|2 =
ℓ2

12
|Amice3|2 .

3 The theorems
First we rewrite the general system (1.7) in terms of the material time derivatives

◦
ϱ+ ϱ divv = 0 ,

ϱ
◦
v + divΠ = f , ΠA =ΠA

0 +ΠA
1 ,

ϱ(S sp
m )

◦
+ divΣm = 2ΠA

m + Γm =: Hm , m = 0, 1,

◦
ε+ ε divv + divq = −(Dv)S··ΠS −

∑
m

τm
(
DS sp

m··Σm + S sp
m··Hm

)
.

(3.1)

To prove (3.1), we remark that for every real function w defining w := ϱw and using the
mass equation of (1.7)

◦
w + w divv = ∂tw + div(wv) = ∂t(ϱw) + div(ϱwv)

= w(∂tϱ+ div(ϱv)) + ϱ(∂tw + v·∇w) = ϱ(∂tw + v·∇w) = ϱ
◦
w .

(3.2)
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For the mass equation in (3.1) we take w = 1 hence w = ϱ and we get
◦
ϱ+ ϱ divv = 0 .

For the momentum equation in (1.7) we take w = vi hence w = ϱvi and get

ϱ
◦
v = ∂t(ϱv) + div(ϱvvT) ,

therefore the second equation in (3.1). Similarly we get for the spin equations in (1.7) by
taking w =

(
S sp

m

)
kl

hence w =
(
Sm

)
kl

ϱ
◦

S sp
m = ∂tSm + div(Sm v

T) ,

therefore the spin equations in (3.1). For the energy we have in (1.7) the identity

e =
ϱ

2
|v|2 + ϱ

2

∑
m

τm|S sp
m |2 + ε , (3.3)

hence from the energy equation in (1.7) we will derive an equation for ε. To get the
balance law for the kinetic energy we multiply the momentum equation in (3.1) with v

and obtain v·(ϱ ◦
v) = ϱ

2
(|v|2) ◦ and v·divΠ = div(ΠT v)−Dv··Π. Hence we obtain∗

ϱ

2

(
|v|2

) ◦
+ div(ΠT v) = v·f +Dv··Π .

By taking w = |v|2 hence w = ϱ|v|2 we get(ϱ
2
|v|2

)
◦
+
ϱ

2
|v|2 divv =

ϱ

2

(
|v|2

) ◦

and then for the kinetic energy(ϱ
2
|v|2

)
◦
+
ϱ

2
|v|2 divv + div(ΠT v) = v·f +Dv··Π . (3.4)

Similarly we obtain for the spin equation by multiplying it with S sp
m

S sp
m··(ϱ ◦

S sp
m

)
=
ϱ

2

(
|S sp

m |2
) ◦
, S sp

m··divΣm = div(S sp
m··Σm)−DS sp

m··Σm ,

so that for |S sp
m |2

ϱ

2

(
|S sp

m |2
) ◦

+ div(S sp
m··Σm) = DS sp

m··Σm + S sp
m··Hm .

By taking w = |S sp
m |2 hence w = ϱ|S sp

m |2 we get(ϱ
2
|S sp

m |2
)

◦
+
ϱ

2
|S sp

m |2 divv =
ϱ

2

(
|S sp

m |2
) ◦

∗In the paper [2 : between (2.5) and (2.6)] a copy mistake is made, it is twice written ϱv instead of v.
We are sorry for this mistake.
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and then we obtain for the energy part of the spin(ϱ
2
|S sp

m |2
)

◦
+
ϱ

2
|S sp

m |2 divv + div(S sp
m··Σm) = DS sp

m··Σm + S sp
m··Hm . (3.5)

Now, we come to the equation for the energy in (1.7). The total energy equation is stated
is (3.3). We subtract the equations (3.4) and (3.5) from the energy equation (1.7) and
get the equation for the internal energy ε with q̃ =ΠT v +

∑
mτmS sp

m··Σm + q

∂tε+ div(εv + q) = −Dv··ΠS −
∑

mτm
(
DS sp

m··Σm + S sp
m··Hm

)
= −(Dv)S··ΠS −

∑
mτm

(
DS sp

m··Σm + S sp
m··Hm

)
,

(3.6)

since Dv··ΠS = (Dv)S··ΠS, and in [2 : 5.2 Lemma] it was proved that

S sp
m··Hm = S sp

m··Hm . (3.7)

Hence all terms of the right side of the ε-equation are objective, and so the entire right
side is an objective scalar. Altogether we have shown that the system (3.1) is true.
From system (3.1) we obtain the following pre-version of the main theorem.

3.1 Theorem. Consider a solution of system (1.7) for a liquid crystal with a director d
of length |d| = ℓ = const > 0. Assume that the spin satisfies (1.6)

S = S0 + S1 with S1 = ϱ d ∧ d ′
, where d

′
:=

◦
d− Aξd . (3.8)

Let the entropy η be of the form

η = η̂(ϱ, ε, d,Dd) , (3.9)

then the residual inequality reads

0 ≤ σ = (Dv)S··((η − ϱη ′ϱ − εη ′ε)Id− η ′εΠ
S
)
+ div(ψ − ηv − η ′εq)

+∇η ′ε·q + η ′ετ0σ0 + (σd + η ′ετ1σ1) ,
(3.10)

where

σm := −
(
DS sp

m··Σm + S sp
m··Hm

)
, σd := η ′d·◦

d+ η ′Dd··(Dd) ◦ . (3.11)

Proof. See the first part of Section 4 up to (4.4). This gives the result for the entropy
production σ in the inequality (3.10), where the definition (3.11) are in (4.3). We only
mention that we got from a model

S1 = ϱ d ∧ Ad , (3.12)

where A is an antisymmetric matrix with A◦Y = QA∗QT as transformation rule, i.e. A
is an objective matrix, and not S1 = ϱ d∧ d ′ as in (3.8). But in [2 : (5.15) and (5.16), 5.4
Addendum] we have shown that (3.12) holds.
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From Theorem 3.1 we derive the following main theorem.

3.2 Main theorem. Consider a solution of system (1.7) for a liquid crystal with a director
d of length |d| = ℓ = const > 0. Assume that the spin satisfies (1.6)

S = S0 + S1 with S1 = ϱ d ∧ d ′
, where d

′
=

◦
d− Aξd . (3.13)

Let the entropy η and the entropy flux ψ be of the form

η = η̂(ϱ, ε, d,Dd) , η ′ε =
1

θ
> 0 , θ the absolute temperature,

ψj = ηvj + η ′εqj −
∑
k

d
′

k

(
η ′dk,j + 2τ1η ′ε

∑
l

dlΣ1klj

)
,

(3.14)

and furthermore let
P := pId− θ

∑
i

∇di⊗η ′∇di , p := θ(η − ϱη ′ϱ − εη ′ε) ,

u := v − vξ .
(3.15)

Then the entropy principle (1.8) is satisfied, if the entropy production satisfies the residual
inequality

0 ≤ σ = η ′εD(v − vξ)··(P −ΠS)

+∇η ′ε·q − η ′ετ0
(
DS sp

0 ··Σ0 + S sp
0 ··H0

)
+d

′·(δηδd + 2τ1
(
η ′εH1 − div(η ′εΣ1)

)
d
)
.

(3.16)

The first variation of η with respect to d is
δη

δdk
:= η ′dk −

∑
j

∂jη ′dk,j ,

and for a representation of (3.16) in components see the inequality (3.17).

The first term of σ is the standard term for ΠS and the second term is the heat flux term.
The rest terms are due to the spin equations, where here the terms of S0 and S1 are
together in one entropy production, while in [2] they appear in separate theorems.
Proof. The proof is in Section 4, where (4.4) is the preliminary result stated in Theorem
3.1. And in (4.6) we make the assumption that the entropy flux ψ is given by (3.14), so
that the first term vanishes. The pressure p is given by Gibbs relation, and a pressure
matrix P takes care of the term containing the director d, see (3.15), which gives

(η − ϱη ′ϱ − εη ′ε)Id−
∑
j

∇dj⊗η ′∇dj − η ′εΠ
S

= η ′εpId−
∑
j

∇dj⊗η ′∇dj − η ′εΠ
S

= η ′εP − η ′εΠ
S = η ′ε(P −ΠS) .

We also write in terms of components

DS sp
0 ··Σ0 + S sp

0 ··H0 =
∑
k,l

(
S sp

0klH0kl +
∑
j

S sp
0kl ′jΣ0klj

)
.
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With this the entropy production becomes

0 ≤ σ = η ′εD(v − vξ)··(P −ΠS)

+∇η ′ε·q − η ′ετ0
∑
k,l

(
S sp

0klH0kl +
∑
j

S sp
0kl ′jΣ0klj

)
+
∑
k

d
′

k

( δη
δdk

+ 2τ1
∑
l

dl
(
η ′εH1kl −

∑
j

∂j(η ′εΣ1klj)
))
.

(3.17)

This inequality is identical with (3.16).

A more sophisticated version of the main theorem one becomes by a combination of the
model of Grad and the theory of Ericksen & Leslie. The latter uses explicite formulas for
the spin equation (see (3.20), here denoted by S1 etc.), where new unknowns π and g are
introduced, which are the notations of the original papers.

3.3 Lemma. Assume

S sp
1 = d ∧ d ′

, Σ1 = d ∧ π , H1 = d ∧ g +
∑
j

∂jd ∧ π•j , (3.18)

where the first equation is already contained in (3.8). Then system (3.1) reads
◦
ϱ+ ϱ divv = 0 ,

ϱ
◦
v + divΠ = f , where ΠA =ΠA

0 +ΠA
1 ,(

ϱ(S sp
0 )

◦ − H0
0

)
+ divxΣ0 = H0 = 2ΠA

0 + Γ0 ,

d ∧ (ϱd
′′
+ divπ − g) = 0 , 2ΠA

1 + Γ1 = H1 = d ∧ g +
∑

j∂jd ∧ π•j ,
◦
ε+ ε div v = − div q − (Dv)S··ΠS + τ0σ0 − 2ℓ2τ1

(
Dd

′··π + d
′·g) ,

(3.19)

where π and g are arbitrary functions, which replace Σ1 and H1, and where d ′′
:=

◦
d

′−Aξd
′

from [2 : (4.5)]).

Proof. The mass and momentum equations and also the spin equation for S sp
0 are the

same as in (3.1) but in the version (2.6). We now treat the spin equation for S sp
1 , that is

ϱ(S sp
1 )◦+ divΣ1 = H1 with S sp

1 = d ∧ d ′
. (3.20)

(This is just the reduced spin equation as in [2 : (6.5)]). Then, with assumption (3.18),
we can exploit [2 : 6.2 Lemma], and get

∂t(ϱd
′
) + div(ϱd ′

vT + π) = gλ + ϱG

where gλ = g + λd with λ is a real valued function and G = Aξd
′ . By [2 : 6.1 Lemma] we

see that this is equivalent to

ϱd
′′
+ divπ = gλ (see [2 : (6.4)]),

in other words
d ∧ (ϱd

′′
+ divπ − g) = 0 . (3.21)
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We look at the internal energy equation where only the summand with m = 1 has to be
treated. We repeat a part of proof of [2 : 3.1 Special case]: We calculate out using (3.18)

DS sp
1 ··Σ1 + S sp

1 ··H1 = D(d ∧ d ′
)··(d ∧ π) + (d ∧ d ′

)··(d ∧ g +∑
j

∂jd ∧ π•j) .

Using the rule (⃗a∧ b⃗)··(c⃗∧ d⃗) = 2(⃗a·⃗c)(⃗b·d⃗)−2(⃗a·d⃗)(⃗b·⃗c) we get with the help of d·d ′
= 0

and d·∂jd = 0

D(d ∧ d ′
)··(d ∧ π) = ∑

j

(∂jd ∧ d
′
+ d ∧ ∂jd

′
)··(d ∧ π•j) =

∑
j

(d ∧ ∂jd
′
)··(d ∧ π•j)

= 2|d|2Dd ′··π − 2
∑
j

(d·π•j)((∂jd
′
)·d) ,

(d ∧ d ′
)··(d ∧ g +∑

j

∂jd ∧ π•j) = 2|d|2d ′·g − 2
∑
j

(d·π•j)(d
′·(∂jd)) .

From d·d ′
= 0 we get ∂jd·d ′

+ d·∂jd ′
= 0 and thus∑

j

(d·π•j)((∂jd
′
)·d) +∑

j

(d·π•j)(d
′·(∂jd)) = 0 .

So with |d|2 = ℓ2 we have proven DS sp
1 ··Σ1 + S sp

1 ··H1 = 2ℓ2(Dd
′··π + d

′·g).
We insert now the functions π and g, defined in (3.18), into the entropy production.

3.4 Lemma. Denote the last summand of (3.16) by

σd := d
′·(δηδd + 2τ1

(
η ′εH1 − div(η ′εΣ1)

)
d
)
.

Then in terms of π and g it reads

σd =
∑
k

d
′

k

(
η ′dk − div

(
η ′∇dk − 2τ1ℓ

2η ′επk•
)
− 2τ1ℓ

2η ′εgk

)
.

Proof. We compute with the product rule

σd = d
′·(δηδd + 2τ1η ′ε

(
H1 − divΣ1

)
d− 2τ1η ′εΣ1··(d⊗∇η ′ε)

)
,

where the main part of the second summand is by (2.6)

d
′·(H1 − divΣ1

)
d = d

′·(ϱ(S sp
1 )

◦ − H0
1

)
d . (3.22)

Now it holds
ϱ(S sp

1 )
◦ − H0

1 = ϱ d ∧ d ′′
, (3.23)

since using the definition of d ′ and d
′′ (see also [2 : 5.5 Lemma])(

d ∧ d ′
)

◦
=

◦
d ∧ d ′

+ d ∧
◦
d

′
= (d

′
+ Aξd) ∧ d

′
+ d ∧ (d

′′
+ Aξd

′
)

= (Aξd) ∧ d
′
+ d ∧ (Aξd

′
) + d ∧ d ′′

= Aξ(d ∧ d
′
) + (d ∧ d) ′

Aξ
T + d ∧ d ′′

= AξS
sp
1 + S sp

1 Aξ
T + d ∧ d ′′

.
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After multiplying with ϱ and using (2.5) we get (3.23). Therefore (3.22) becomes

d
′·(H1 − divΣ1

)
d = d

′·(ϱ(d ∧ d ′′
)d
)
= ϱ d

′·((dd ′′T− d
′′
dT)d

)
= ϱ d

′·d d ′′·d− ϱ d
′·d ′′

ℓ2 = −ℓ2d ′·(ϱd ′′
)

since d ′·d = 0. By using the identity (3.21)
−ℓ2d ′·(ϱd ′′

) = ℓ2d
′·( divπ − g) ,

hence
2τ1η ′ε

∑
k,l

d
′

kdl(H1 − divΣ1)kl = 2τ1η ′εℓ
2d

′·( divπ − g) .

Also by assumption (3.18)
−2τ1

∑
k,j,l

d
′

kdl(∂jη ′ε)Σ1 klj = −2τ1
∑
k,l,j

d
′

kdl(∂jη ′ε)(dkπjl − πkjdl)

= −2τ1d
′·d∑

l,j

dl∂j(η ′ε)πjl + 2τ1ℓ
2
∑
k,j

d
′

k∂j(η ′ε)πkj = 2τ1ℓ
2d

′·(π∇η ′ε)

since d ′·d = 0. Then it holds all in all

σd =
∑
k

d
′

k

( δη
δdk

+ 2τ1ℓ
2η ′ε( div(π)− g)k + 2τ1ℓ

2(π∇η ′ε)k

)
=

∑
k

d
′

k

(
η ′dk − div(η ′∇dk) + 2τ1ℓ

2 div(η ′επ)k − 2τ1ℓ
2η ′εgk

)
=

∑
k

d
′

k

(
η ′dk − div

(
η ′∇dk − 2τ1ℓ

2η ′επk•
)
− 2τ1ℓ

2η ′εgk

)
.

We now consider both effects, and obtain from 3.2 and 3.4 the following theorem.

3.5 Final theorem. Consider a solution of system (1.7) and let be as usual
Π = P − S . (3.24)

Assume that (3.13) is satisfied for the spin and further assume (3.18) for Σ1 and H1. If
the entropy η and the entropy flux ψ is given by (3.14), that is

η = η̂(ϱ, ε, d,Dd)

ψj = ηvj + η ′εqj −
∑
k

d
′

k

(
η ′dk,j − 2τ1ℓ

2η ′επkj
)
,

(3.25)

we have for the residual inequality

0 ≤ σ = η ′ε (Dv)
S··SS +∇η ′ε·q + η ′ε (Du)

A··PA + σ0 + σd , (3.26)
where u := v − vξ and

σ0 := η ′ετ0σ0 = −η ′ετ0
(
DS sp

0 ··Σ0 + S sp
0 ··H0

)
σd = d

′·(η ′∇d − div
(
η ′Dd − 2τ1ℓ

2η ′επ
)
− 2τ1ℓ

2η ′εg
)
.

(3.27)

Definition: We set ΠA
m = PA

m −SA
m when SA = SA

0 +SA
1 and PA = PA

0 +PA
1 . We mention

that below we assume PA
0 = 0 and PA

1 = 0.
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Proof. We substitute in (3.14) the term for Σ1, that is Σ1klj = dkπlj −πkjdl by (3.18). For
the last summand of ψ we compute

−
∑
k

d
′

k

(
η ′dk ′j

+
∑
l

2τ1η ′εdlΣ1klj

)
= −

∑
k

d
′

k

(
η ′dk ′j

+
∑
l

2τ1η ′εdl(dkπlj − πkjdl)
)

= −
∑
k

d
′

kη ′dk ′j
− 2τ1η ′ε

∑
kl

d
′

kdl(dkπlj − πkjdl)

= −
∑
k

d
′

kη ′dk ′j
− 2τ1η ′ε

∑
kl

d
′

kdldkπlj + 2τ1η ′ε

∑
kl

d
′

kdlπkjdl

= −
∑
k

d
′

kη ′dk ′j
+ 2τ1η ′εℓ

2
∑
k

d
′

kπkj = −
∑
k

d
′

k

(
η ′dk ′j

− 2τ1ℓ
2η ′επkj

)
,

since d ′·d = 0. Hence the representation of ψ in (3.25) follows. In the residual inequality
(3.16) we use the definition of σ0 in (3.27), whereas σd was defined and calculated in 3.4.
For the first summand of (3.16) by the setting of Π we get

D(v − vξ)··(P −ΠS) = (Dv)S··SS +(Du)A··PA

if we set u := v − vξ. From this (3.26) follows immediately.

If we now take special forms of π and g this implies the following theorem. These special
forms essentially depend on the entropy η and on g1 as independent variable, the notation
of which is also taken from the original papers.

3.6 Theorem. We now assume that we set PA
0 = 0, that is PA = PA

1 , and we define

π :=
1

2τ1ℓ2η ′ε
η ′Dd − d⊗β , g :=

1

2τ1ℓ2η ′ε
η ′d − (γd+Dd β)− g1 , (3.28)

where g1 is an arbitrary function, and β and γ are degrees of freedom which don’t appear
in the residual inequality. Then it follows(

2− 1
τ1ℓ2

)
PA = 2SA

1 − d ∧ g1 − Γ1 if τ1ℓ
2 > 1

2
, (3.29)

σd = 2τ1ℓ
2η ′εd

′·g1 . (3.30)

Proof of PA. Since 2ΠA
1 + Γ1 = H1 and because of the representation of H1 in (3.18) we

get
d ∧ g = 2ΠA

1 −
∑
j

(∂jd) ∧ π•j + Γ1 .

With the constitutive equations (3.28) for π and g this is

d ∧
(

1
2τ1ℓ2η ′ε

η ′d − g1 − (γd+Dd β)
)

= 2ΠA
1 −

∑
j

(∂jd) ∧
( 1

2τ1ℓ2η ′ε
η ′∂jd − βjd

)
+ Γ1 .
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The γ-term vanishes and the β-terms on both sides are equal, since

−d ∧ (Dd β) =
∑
j

βj d ′j ∧ d =
∑
j

(∂jd) ∧ (βjd) ,

therefore

d ∧
( 1

2τ1ℓ2η ′ε
η ′d − g1

)
= 2ΠA

1 −
∑
j

(∂jd) ∧
( 1

2τ1ℓ2η ′ε
η ′∂jd

)
+ Γ1 .

Now with ΠA
1 = −SA

1 +PA by the Definition in 3.5 and the assumption PA
1 = PA it turns

out
d ∧ g1 + Γ1 =

1
2τ1ℓ2η ′ε

(
d ∧ η ′d +

∑
j

(∂jd) ∧ η ′∂jd

)
− 2ΠA

1

=
1

τ1ℓ2η ′ε

(
d⊗η ′d +

∑
j

(∂jd)⊗η ′∂jd

)A − 2ΠA
1

= − 1

τ1ℓ2η ′ε

(∑
k

(∇dk)⊗η ′∇dk

)A − 2ΠA
1 =

1

τ1ℓ2
PA − 2ΠA

1

by Condition 1.1 and the definition (3.15). Since PA − 2ΠA
1 = 2SA

1 −PA it follows

d ∧ g1 = 2SA
1 −

(
2− 1

τ1ℓ2
)
PA − Γ1 ,

that is the claim. For the condition τ1ℓ2 > 1
2

we computed in a charakteristic special case
in 2.2 that τ1ℓ2 = 6.

Proof of σd. Substituting (3.28) into the divergence term of (3.27) yields∑
j

∂j
(
η ′dk,j − 2τ1ℓ

2η ′επkj
)
= 2τ1ℓ

2
∑
j

∂j
(
η ′εdkβj

)
= 2τ1ℓ

2 div(η ′εβ) dk + 2τ1ℓ
2
∑
j

η ′εdk ′jβj ,

and for the g-term it holds

η ′dk − 2τ1ℓ
2η ′εgk = 2τ1ℓ

2η ′ε

(
γdk +

∑
j

dk ′jβj + g1k
)
.

Hence
η ′dk − div

(
η ′∇dk − 2τ1ℓ

2η ′επk•
)
− 2τ1ℓ

2η ′εgk

= 2τ1ℓ
2η ′εg1k + 2τ1ℓ

2
(
η ′εγ − div(η ′εβ)

)
dk ,

therefore it follows (3.30) since d·d ′
= 0. Thus the d ′-term in the formula (3.16) of σ is

rewritten as d ′·(2τℓ2η ′εg1).

Assuming that Γm = 0, m = 0, 1, and PA = 0 we derive the following application.
It would be very interesting to have applications in the situation that Γm are given by
Maxwell equations.
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3.7 Application. Let Γm = 0 for m = 0, 1 and assume PA = 0 (that is an assumption
on η, we assume PA

0 = 0 and PA
1 = 0). Further assume that Σ0 = 0. Then the residual

inequality reads

0 ≤ σ = η ′ε (Dv)
S··SS +∇η ′ε·q + 2η ′ετ0S

sp
0 ··SA

0 + 2τ1ℓ
2η ′εd

′·g1 , (3.31)

Proof. From PA
0 = 0 and Γ0 = 0 it follows

H0 = 2ΠA
0 + Γ0 = 2ΠA

0 = −2SA
0 ,

that is, σ0 in (3.27) reads

σ0 = −η ′ετ0DS sp
0 ··Σ0 + 2η ′ετ0S

sp
0 ··SA

0

Using PA = 0 and (3.30) for σd the claim follows immediately from (3.26).

4 Entropy principle
The main part of the proof is presented in this section. For the entropy we have by (3.14)

η = η̂(ϱ, ε, d,Dd) (4.1)

and for the spin we have by (3.8)

S = S0 + S1 with S1 = ϱ d ∧ d ′
, where d

′
=

◦
d− Aξd (4.2)

is an objective vector, see [2 : 4.3 Lemma, (4.4)], so that S1 is an objective matrix. With
the entropy in (4.1) we compute for the entropy production

σ = ∂tη + divψ =
◦
η + η divv + div(ψ − ηv)

= η ′ϱ
◦
ϱ+ η ′ε

◦
ε+ η ′d·◦

d+ η ′Dd··(Dd) ◦ + η divv + div(ψ − ηv) .

By the general system (1.7), which is equivalent to (3.1), the entropy production becomes

σ = (η − ϱη ′ϱ − εη ′ε) divv + div(ψ − ηv)− η ′ε divq − η ′εDv··ΠS

+η ′d·◦
d+ η ′Dd··(Dd) ◦ − η ′ε

∑
m

τm
(
DS sp

m··Σm + S sp
m··Hm

)
= Dv··((η − ϱη ′ϱ − εη ′ε)Id− η ′εΠ

S
)
+ div(ψ − ηv − η ′εq)

+∇η ′ε·q + η ′d·◦
d+ η ′Dd··(Dd) ◦ − η ′ε

∑
m

τm
(
DS sp

m··Σm + S sp
m··Hm

)
.

Therefore, if we define the abbreviations (3.11)

σm := −
(
DS sp

m··Σm + S sp
m··Hm

)
,

σd := η ′d·◦
d+ η ′Dd··(Dd) ◦ ,

(4.3)
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the whole expression can be written as

0 ≤ σ = Dv··((η − ϱη ′ϱ − εη ′ε)Id− η ′εΠ
S
)
+ div(ψ − ηv − η ′εq)

+∇η ′ε·q + η ′ετ0σ0 + (σd + η ′ετ1σ1) .
(4.4)

This is the residual inequality in Theorem 3.1.

The most important term in (4.4) is the σd term, since
◦
d and (Dd)

◦ have to be expressed
by the d ′-terms, where d ′ is part of S sp

1 . This is done in Section 5 and gives the result

σd = η ′d·◦
d+ η ′Dd··(Dd) ◦

=
∑
i

η ′did
′

i +
∑
i,j

η ′di,j(d
′

i ) ′j −D(v − vξ)··(∑
j

∇dj⊗η ′∇dj

)
.

(4.5)

Also the σd-term has only objective quantities. Now we go to the σ1-term. Plugging the
definition (4.2) of S1 we obtain

σ1 = −
(
DS sp

1 ··Σ1 + S sp
1 ··H1

)
= −

(
D(d ∧ d ′

)··Σ1 + d ∧ d ′··H1

)
= −

∑
k,l

(∑
j

∂j(dkd
′

l − d
′

kdl)Σ1klj + (dkd
′

l − d
′

kdl)H1kl

)
= 2

∑
k,l

(∑
j

(d
′

k ′jdl + d
′

kdl ′j)Σ1klj + d
′

kdlH1kl

)
=

∑
k,j

d
′

k ′j

∑
l

2dlΣ1klj +
∑
k

d
′

k

(∑
l,j

2dl ′jΣ1klj +
∑
l

2dlH1kl

)
.

Therefore the part of the entropy production which have contributions of the director is

σd + η ′ετ1σ1 =

=
∑
k,j

d
′

k ′j

(
η ′dk,j +

∑
l

2τ1η ′εdlΣ1klj

)
+
∑
k

d
′

k

(
η ′dk +

∑
l,j

2τ1η ′εdl ′jΣ1klj +
∑
l

2τ1η ′εdlH1kl

)
−D(v − vξ)··(∑

j

∇dj⊗η ′∇dj

)
=

∑
j

∂j

(∑
k

d
′

k

(
η ′dk,j +

∑
l

2τ1η ′εdlΣ1klj

))
+
∑
k

d
′

k

(
η ′dk −

∑
j

∂jη ′dk,j + 2τ1
∑
l,j

(
η ′εdl ′jΣ1klj − ∂j(η ′εdlΣ1klj)

)
+
∑
l

2τ1η ′εdlH1kl

)
−D(v − vξ)··(∑

j

∇dj⊗η ′∇dj

)
.

Moreover, in the middle term the coefficient of d ′

k becomes

η ′dk −
∑
j

∂jη ′dk,j + 2τ1
∑
l,j

(
η ′εdl ′jΣ1klj − ∂j(η ′εdlΣ1klj)

)
+
∑
l

2τ1η ′εdlH1kl

=
δη

δdk
+ 2τ1

∑
l

dl

(
η ′εH1kl −

∑
j

∂j(η ′εΣ1klj)
)
,
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hence

σd + η ′ετ1σ1 =
∑
j

∂j

(∑
k

d
′

k

(
η ′dk,j +

∑
l

2τ1η ′εdlΣ1klj

))
+
∑
k

d
′

k

( δη
δdk

+ 2τ1
∑
l

dl

(
η ′εH1kl −

∑
j

∂j(η ′εΣ1klj)
))

−D(v − vξ)··(∑
j

∇dj⊗η ′∇dj

)
.

The first term on the right side goes to the div-term in σ and the last term goes together
with the Dv-term, since (Dv)S = (D(v − vξ))

S. Therefore we finally obtain for the entropy
production σ

0 ≤ σ = (Dv)S··((η − ϱη ′ϱ − εη ′ε)Id− η ′εΠ
S
)
+ div(ψ − ηv − η ′εq)

+∇η ′ε·q + η ′ετ0σ0 + (σd + η ′ετ1σ1)

=
∑
j

∂j

(
ψj − ηvj − η ′εqj +

∑
k

d
′

k

(
η ′dk,j +

∑
l

2τ1η ′εdlΣ1klj

))
+D(v − vξ)··

(
(η − ϱη ′ϱ − εη ′ε)Id−

∑
j

∇dj⊗η ′∇dj − η ′εΠ
S
)

+∇η ′ε·q − η ′ετ0
(
DS sp

0 ··Σ0 + S sp
0 ··H0

)
+
∑
k

d
′

k

( δη
δdk

+ 2τ1
∑
l

dl

(
η ′εH1kl −

∑
j

∂j(η ′εΣ1klj)
))

.

(4.6)

This formula for the entropy production σ is the general form of the entropy production
under the assumption that the entropy fulfills (4.1) and the spin is given by (4.2). This
formula is further evaluated in the proofs of Section 3.

5 Director part
The purpose of this section is to handle the term σd which occurred in the residual
inequality in Section 4. This part of the entropy principle is contained in [2 : Sec. 8],
although under different assumptions. Let us use the fact that η must be an objective
scalar, consequently by Condition 1.1 there holds for any antisymmetric matrix B

0 = η ′d·Bd+ η ′Dd··(BDd+DdBT) .

We take B satisfying the transformation rule B◦Y = Q̇QT +QB∗QT, and an example is
B := (Dv)A. With this we get for the d-terms in the entropy production

σd := η ′d·◦
d+ η ′Dd··(Dd) ◦

= η ′d·( ◦d− Bd) + η ′Dd··((Dd) ◦ − (BDd+DdBT)
)

= η ′d·dη + η ′Dd··Dη ,
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where dη :=
◦
d − Bd is an objective vector, which we have proved in [2 : 4.3(2)]. And

Dη := (Dd)
◦ − (BDd+DdBT) satisfies the representation

(Dd)
◦
ij = (di ′j)

◦
= di ′jt +

∑
k

vkdi ′jk

=
(
di ′t +

∑
k

vkdi ′k
)

′j
−
∑
k

vk ′jdi ′k =
( ◦
di
)

′j
−
∑
k

vk ′jdi ′k ,

hence, where we use now B = (Dv)A,

Dη
ij = (Dd)

◦
ij − (BDd)ij −

1

2

∑
k

di ′k(vj ′k − vk ′j)

=
( ◦
di
)

′j
− (BDd)ij −

1

2

∑
k

di ′k(vj ′k + vk ′j)

=
(( ◦
di
)

′j
−

∑
k

Bikdk ′j

)
−
∑
k

di ′k (Dv)
S
kj .

The first term (in bracket) is an objective tensor in (i, j), see [2 : 4.3(3)], also, of course,
the second term with the symmetric part of the velocity gradient, which is easily to see.
Since dη =

◦
d− Bd we get( ◦

di
)

′j
−

∑
k

Bikdk ′j =
(
dηi +

∑
k

Bikdk
)

′j
−
∑
k

Bikdk ′j = (dηi ) ′j +
∑
k

Bik ′jdk ,

which finally gives
Dη

ij = (dηi ) ′j +
∑
k

Bik ′jdk −
∑
k

di ′k (Dv)
S
kj ,

where now all three terms are objective tensors. This is because Bik in (i, k) is a tensor
which transforms like the derivative of a velocity, where the inhomogeneous part of this
transformation depends only on time. Therefore Bik ′j has not this inhomogeneous part
and is in (i, k, j) an objective 3-tensor.
The matrix Aξ in 2.1 is an antisymmetric matrix depending only on t and transforms as
B like the derivative of a velocity. Therefore we see that B := B − Aξ is an objective
tensor, and since Aξ depends only on time we conclude that Bik ′j = Bik ′j is, as said, an
objective 3-tensor. Therefore using (3.8)

dη +Bd =
◦
d− Aξd = d

′
. (5.1)

Hence
(dηi ) ′j +

∑
k

Bik ′jdk = (dηi ) ′j +
∑
k

Bik ′jdk

=
(
dηi +

∑
k

Bikdk
)

′j
−

∑
k

Bikdk ′j = (d
′

i ) ′j −
∑
k

Bikdk ′j ,

and therefore
Dη

ij = (d
′

i ) ′j −
∑
k

Bikdk ′j −
∑
k

di ′k (Dv)
S
kj ,

dηi = d
′

i −
∑
k

Bikdk .
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Hence the contribution of σd is

σd = η ′d·dη + η ′Dd··Dη

=
∑
i

η ′di

(
d

′

i −
∑
k

Bikdk
)
+
∑
i,j

η ′di,j

(
(d

′

i ) ′j −
∑
k

Bikdk ′j −
∑
k

di ′k (Dv)
S
kj

)
=

∑
i

η ′did
′

i +
∑
i,j

η ′di,j(d
′

i ) ′j

−
∑
i,k

(
η ′didk +

∑
j

η ′di,jdk ′j

)
Bik −

∑
i,j,k

η ′di,jdi ′k (Dv)
S
kj .

Now we make again usage of the Condition 1.1 and this gives for the B-term∑
i,k

(
η ′didk +

∑
j

η ′di,jdk ′j

)
Bik = −

∑
i,k,j

η ′dj,idj ′kBik

= −B··(∑
j

η ′∇dj⊗∇dj
)
= B··(∑

j

∇dj⊗η ′∇dj

)
= (D(v − vξ))

A··(∑
j

∇dj⊗η ′∇dj

)
,

since Aξ = Dvξ by 2.1 is antisymmetric and therefore B = (Dv)A − Aξ = (D(v − vξ))
A.

Also (Dv)S = (D(v − vξ))
S and therefore∑

i,j,k

η ′di,jdi ′k (Dv)
S
kj =

∑
j,k

(Dv)Skj
∑
i

η ′di,jdi ′k = (Dv)S··(∑
i

∇di⊗η ′∇di

)
= (D(v − vξ))

S··(∑
i

∇di⊗η ′∇di

)
.

Together we obtain for the contribution σd

σd = η ′d·dη + η ′Dd··Dη

=
∑
i

η ′did
′

i +
∑
i,j

η ′di,j(d
′

i ) ′j −D(v − vξ)··(∑
j

∇dj⊗η ′∇dj

)
. (5.2)
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