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Abstract. In this paper we present a unified theory for gravitation and magnetiza-
tion including electrodynamics. It is based on Maxwell’s equations which in the form of
Ampere’s circuital law is the antisymmetric part of this theory, and the symmetric part
is the gravity, which contains Newton’s gravitation in the time-dependent relativistic ver-
sion. Since magnetism and gravity are formulated in one system of differential equations,
this new theory combines these two parts, and therefore this combination will probably
bring some new insight to related problems which are discussed these days.

We further study the related force in the mass-momentum system. This force consists
of the well-known Newton force and the well-known Lorentz force. We show that they
are exactly those forces that are predicted by our theory. We prove that these forces are
equal to the divergence of a 4-flux in the mass-momentum equation. In this way these
forces can be considered as internal expressions. In the proof all 4-fields of the new theory
have to be 4-gradients of vector potentials, which is a well-known assumption.
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1 Introduction

The purpose of this paper is to present a theory that covers electromagnetism as well as
the effects of gravity. The picture is that both effects are based on the atomic structure of
materials, where magnetism is the bridge between gravity and electrical effects. A natural
way to do this is to assume a differential equation in R* of the form (3.1)

divn =7, (1.1)

where div is defined below. The tensor 91 contains terms for gravitation as well as for
magnetization, and the source term j contains the masses for gravitation and the currents
for electricity. We call the contravariant tensor 901 the “general magnetic tensor” and the
4-vector j is split into j = j+jon, where j is a contravariant vector and jgy is due to Coriolis
effects as described in Lemma 3.1. In a Lorentz frame 9t and j have the representation

(4.6) "

T
m=| = =D ] , jzm. (1.2)
—(F+D) M°+R(H) J

Here the quantities are uniquely determined by the tensor 9, if M* is symmetric. And
R(H) is defined in (4.2)-(4.4). The 4-vector F = (Fp, F') defines “Newton’s gravitational
law”, see 4.2(1), and D and H describe “Ampere’s circuital law” in the kg-based version.
This version is necessary because the gravitational field F' is kg-based, whereas D and H
originally are based on As. In detail, D = koD and H = koH where D := D and H := H
are the well-known quantities in Section 2 with kg being the conversion parameter, see
Section 7. In Section 2 we give a short overview of the derivation of the classical Maxwell
equations. As a consequence our equation (1.1) in a Lorentz frame is equivalent to

50, Fy — div,(F — D) = o,

. . (1.3)
—O0(F + D)+ div,(M*+R(H)) =j.

This system is a coupling of the laws of Newton and of Ampére, and in a Lorentz frame
the first scalar equation is the time version of Newton’s gravitational law combined with
Gauss’s law and the second vector equation is Ampére’s circuital law combined with a
law, which determines the portion j® of j = j*+j* which corresponds to the symmetric part
of the equation. The splitting in symmetric and antisymmetric part is done in Section 3,
the symmetric part covers gravity, whereas the antisymmetric part covers in particular
electricity. The model will be presented in Section 3 and Section 4. The latter contains
the differential equations in a Lorentz frame.

In Section 6 we deal with the existence of the scalar potential and the vector potential,
and we derive as an equivalent version of (1.3) the equation

1 .

¢

1 1 (1.4)
HoC Ho

Here ¢ = ¢9+2y¢° is the total scalar potential and A is the classical vector potential. The
classical gravitational potential is ¢¢ and ¢° is the classical electrodynamical potential.



The polarization P is kg-based and M, see (6.3), is a matrix which is partly determined by
magnetization and gravitation. We mention that during the derivation of this equivalent
system we had to satisfy the Lorenz gauge condition.

In Section 5 we deal with the so-called Newton-Lorentz force, that is the force density
£, by which 9 acts on the mass-momentum equation. Without polarization and mag-
netization it is

g = gg(gjs + :6)'(1)
: } g [‘QSFO — Foj* + 5 Esj° (1.5)

:ngSF+50(QaE+jaXB) C_2 MSjS

The first term on the right side contains the well known classical terms as they are used
e.g. in MHD. The formula (1.5) is shown via the identity

div( 5 (MG AnG) = G(FT + H7) (1.6)

where 9 is the original matrix in (1.1).

References: There are no direct references, but historically there has been a lot of effort
to combine the gravitational effects with the electrodynamical effects, for example, the
work of Cartan and Einstein circa 1924-1934. We mention the contributions of Vargas
& Torr in [12] and of Goenner in [6] and [7], where a detailed historical review is given.
Another approach was created by Heaviside in [8] 1893, where the gravitational quantities
are defined in analogy with the quantities in Maxwell’s theory. This method is called
Gravitoelectromagnetism (GEM), see [11].

Notation: We denote terms in spacetime R* with an underscore which are usually used
in space R3 only. For example in Lorentz frames we write q = (q0,q), and also

Yu = (9u,Veu), divg = (0o, diveq).

For a tensor T' = (T};), ;- we define

divT = (Z ajTij)po'

J=0 =
Definition: The definition of a contravariant m-tensor T'= (T, ..k, )g, 1. >0 1

Tkl.,.kmOY = Z Yk1 ey Tt Yk‘m "k ]_:1---1_6771 ) (]_7)

E1,--~,15m20

and the definition of a covariant m-tensor T = (Thy..k )i, 5, >0

A TETD DUNS (WIRERS TP RS (1)
k1yeeoykm >0
Here y = Y (y*) is the observer transformation, where the coordinates of the different
observers are y = (yo,%1,¥2,¥3) € R* and y* = (y5, v}, v5,v5) € RL A O-tensor is a
function f satisfying f* = foY.



2 Maxwell equations

In this section we give a short description of the derivation of Maxwell equations in order
to show the reader some of the methods which we used in other sections.

Maxwell’s equations are given by two things, by “Ampere’s circuital law”, which we
present as a conservation law (2.5), and by “Faraday’s law of induction”, which we formu-
late as a constitutive equation (2.7). The result is that Maxwell’s equations are equivalent
to four differential equations. In a Lorentz frame they are given by (2.1) and (2.3)

div,D = o,
. (2.1)
—0:D +rot , H=3j,
1 1
D:€0E+P, H:—B—M, 50/110:—2, (22)
Ho C
div,B =0,
(2.3)

0B +rot,E=0.

Here p is the charge density and j the current density, and D, H, P, M, B, and FE are
the well-known fields in electrodynamics. (We mention that the boldface quantities are
D = D and p = 9 etc. where the overlined quantities are As-based in the general theory.
The other quantities are the same in the general theory.) Without polarization P and
without magnetization M this is how Maxwell equations usually are presented

div,E =2
€0
1 .
—C—QatE +rot,B = poJ, (2.4)
div,B =0,

0B +rot , £ =0.

We have introduced Maxwell equations in a different but equivalent way (see [1: VI 2]).
In a general frame we start (see e.g. Duvaut & Lions [3: VII 2]|) with a conservation law
in R*

divs =j,

2.5
$H:R* - RY antisymmetric. (2:5)

Here $) is an antisymmetric contravariant tensor and j is a contravariant vector due to
the fact that $ is antisymmetric. Also due to the antisymmetry of ) the vector j satisfies
the conservation of charge (see 3.3)

divy =0.

In a Lorentz frame we have the representation

0 D, D, Ds 0
ﬁ — _Dl O H3 —Hg j: jl
-D, —H; 0 H, |’ Jo |’

-D; H, -H, 0 J3



so that (2.5) means, since div = (9;, div,), that the first two differential equations in (2.1)
are satisfied. The conservation of charge becomes 0,0 + div,j = 0. Now, in a general
frame, we write down the “Maxwell-Lorentz aecther relations”

5:$Gﬂﬁ—m, (2.6)

where € and B again are antisymmetric, and together with 8 is a contravariant tensor.
Consequently € is a covariant tensor. In a Lorentz frame we have the representation

0 —-E —FE, —Ej 0O -P, —-P, —P;
E1 0 B3 —Bg . P1 0 M3 _M2
E2 —B3 0 Bl ’ m - P2 —M3 0 M1
E3 BQ —Bl 0 P3 M2 —M1 0

@:

This implies the equivalence of (2.6) and (2.2). To get the second two differential equations
of (2.3) we assume (see Landau & Lifschitz [10: §26 (26.5)]) Faraday’s law of induction

8l€jk + @Q‘Ekl + akélj =0 forj,k,1=0,...,3. (27)

Since € is antisymmetric, this is relevant only for {j, k,} equal to {0,1,2}, {0,1,3},
{0,2,3}, and {1,2,3}. Therefore this is equivalent to four real differential equations. In
a Lorentz frame this means, see the proof of 4.3, the equations in (2.3) hold, that is

div,B=0, 0;B+rot,E=0.

Altogether we have shown that (2.5), (2.6) and (2.7) in a Lorentz frame are equivalent to
Maxwell equations (2.1), (2.2), (2.3).

The potential A is a consequence of these equations. In fact, it follows that Faraday’s
law (2.7) by the Poincaré lemma is equivalent to the local existence of a vector potential
A= (—0¢° Ay, Ay, A3), where ¢° is the electrical potential. The connection to E and B,
see Section 6, is given by

E=-V,6°—8,A, B=rot,A.

Remark: To compare this with the remaining paper, you have to write boldface quanti-
ties as overlined quantities, like ) = $ and D = D etc. as mentioned above. And on the
right sides you have to write o = g* and j = j as the overlined version of the antisym-
metric part. The other quantities B, E, g, o stay the same throughout this paper.

A detailed presentation of this derivation you will find in [1: VI 2 Maxwell equations].
For more details about the vector potential see Section 6 of this paper.



3 General Magnetodynamics

We want to describe the gravitational and the electrical fields in a unified way including
magnetic materials. So we write down a law for a general 4 x 4-matrix, which is a system
of four differential equations usually valid in the entire spacetime R*:

General law of Magnetodynamics:

divon = (3.1)

where the test functions are covariant vectors.

We call M = (mij>ij:0 5 the general magnetic tensor. For the special case of an
antisymmetric matrix this is Ampere’s circuital law as presented in Section 2. Written in
components the general system reads

>S9, My =3 fori=0,...,3,

720

where y = (0,91, ¥2,y3) € R?* are the coordinates. Here R* is called the spacetime, but
at the moment it is not said what is the time and what is the space. For this the matrix
G is introduced, that is, G describes the geometry and depends on the observer, see for
example [2: 3 Time and space]. The weak formulation of equation (3.1) is

/R( > 0,6 M+ 3G ) AL =0 (3.2)

1,520 i20

for test functions ¢ € C5°(R*;R*), where ( is a covariant vector. Now this is true if the
quantities in the system satisfy the transformation rules (see [1: Equ.(5.8)] with Z = DY)

MyjoY = > VY5 M5, (3.3)
7,j>0
jioY = >0 Yia; M5+ > Yiaii, (3.4)
1,j>0 120

where Y : R* — R* is the observer transformation. In particular 9 is a contravariant
tensor. By a general method applied to the system here, the transformation rule (3.4)
implies the following lemma.

3.1 Lemma. The equation (3.4) gives rise to the following representation

J=i+im. dwmi= Y My (3.5)

p,q>0

where the vectors €P¢ satisfy the transformation rule

Z Yb/ﬁ}/&/ququ = Z Y;/;Qf;m + }/i/qu fOl" all 7 and (}3, q_> (36)
p.q 7



Thus (3.4) and (3.6) leads to the fact that j is a contravariant vector. Besides this 901 is
a contravariant tensor and system (3.1) becomes

divn — >0 M, =j. (3.7)

p,q=>0

Here €7? we call Coriolis coefficients. Remark: These coefficients are defined for all
observers in (3.6). It is a physical statement that for certain observers all coefficients €7*
are 0. These special observers are supposed to be in an “inertial frame”.

We note that in differential geometry the same rule (3.6) is satisfied for the negative
Christoffel symbols. See also [2: 6 Momentum equation].

Symmetric and antisymmetric part.
The tensor 9 is split into the symmetric part 9> and the antisymmetric one IA:

M = 9M° + M*,

M = (M+Mm"), zmAzl(zm—zmT).

2

l\:)ln—

It follows from (3.3) that IMMT;;0Y = > ijs0YiiYrj 7", and therefore besides 9 both

IS and M satisfy the transformation rule (3.3). Let us define (the indices ’s’ and ’a’
belong to the name, whereas the indices "T7,’S’’A’ define a mathematical operation)

= divOnS, j%i= divOr = j=7"+j°. (3.8)

Later, the symmetric part will correspond to gravitation and the antisymmetric part will
cover electrodynamics.

3.2 Lemma. The definitions in (3.8) imply the transformation formulas

oY = 3 Vi M5 + X Yiais, (3.9)
4,7>0 >0
oY = 3 Vinje* (3.10)
>0

They lead to the fact that

=3 = 3 m,e and =)

p,q>0

are contravariant vectors.

Proof. Since M® satisfies (3.3), ie. ME;0Y = 375~ Vi O*5;=, the definition of

g J ] 17
j* := divNS implies (we refer to [1: Section .5], see [1: 1.5.3]) that it satisfies the trans-
formation rule

oY = X Y+ 3 Vil

4,7>0 >0



Bl

Similar 94 also satisfies (3.3), i.e. M0V = 3= (Vi) 5455, and the definition
?‘1 = divO? implies

jPoY = 3 Vg + XYt = 3 Yt

7,7>0 >0 >0
we see that j° and j* are contravariant vectors. Il
It implies that j* satisfies the “charge conservation”.

3.3 Charge conservation. For the charge density j* the conservation law

divj® =0

applies. The test functions of this equation are objective scalars.

Proof. The definition j* := div9M* says that in its weak version

/ (Zalgksz*,d +2cka) dL*=0.

R4 N K k

The transformation formulas in 3.2, that is (3.3) for M* and (3.10) for j¢, imply that this
equation holds for test functions ( that are covariant vectors (that is the statement of

[1: Property 1.5.2]). We set (;, = Oyn with a scalar function 1 (the required transformation
rule for ¢ follows from n* = noY’). Then it is

/ (Z 811#7 f)ﬁAkl + Z 8;47]2) dL4 =0.
R4 kl k

Since M4 is antisymmetric and D2 symmetric, the first summand vanishes. Hence

[ (Sowmit)aut =0,

the assertion. O
Therefore we obtain mainly as symmetric part “Newton’s gravitation law” and as anti-
symmetric part “Ampere’s circuital law”:
M=M + M =F +H
Ampere’s circuital law: div$ = j°
$ is always antisymmetric, and here = 94 (3.11)

Newton’s gravitation law:  divg = j*

¥ contains the symmetric part, and here F=m

The gravitational part may also contain some antisymmetric contribution, at least it
seems so. In any case, the combination of the electrical part with gravitation makes it



necessary to combine the kg-based gravitation field with the As-based electrodynamics.
This in detail is carried out in Section 7. For the form of $ and § in a Lorentz frame see
Section 4.

Representation as a covariant tensor.

To transform the contravariant tensor 9t into a covariant tensor 91 is done by the identity

M = 2GNGT. (3.12)

In fact it holds

3.4 Lemma. The matrix 9 in (3.12) is a covariant tensor, that is
N* =DY " NoY DY .
Proof. 1t holds G*' = DY "G oY DY and 9N = $G'MG~". From this it follows
AN = (GG = DY TG oY DYDY TG ToY DY
=DYTG loYMoYG ToY DY = > DY Moy DY .
Consequently 2 is a covariant tensor. Il

The representation 9 = § + § from (3.11) yields, because of (3.12),

sz§+5§ — *Jt:SJrf’i,

° (3.13)
T =c2GFCT, H =c2CHGT,

which defines the quantities § and §). The electrical quantities @ are defined by (cf. 2)

Maxwell-Lorentz aether relation:

H = %G(’EGT — B or equivalent £ =, —P
(goﬂocz = 1) (314)

¢ contains electric field and magnetic flux,

B = 2GBGT contains polarization and magnetization.

For the form of $ and § in a Lorentz frame see Section 4, also for & and ‘.
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4 The system in Lorentz frames

We describe an observer who has the standard matrix (with G in italic style we denote
the gravitational constant)
1
-5 0
0 Id

and corresponding coordinates (t,x) = y € R*. Such a situation we call Lorentz frame.
We mention that working only in Lorentz frames one can not deal with arbitrary observer
transformations, and we focus on the fact that we assume that the Coriolis coefficients in
(3.7) are zero. In a forthcoming paper we will treat the case of general frames.

In a Lorentz frame let us write

FO T T
~ ~ U A 0 D
m:g+ﬁ7 S: 2 ) ﬁ_|: :|7 (41>
Ly ~D R(H)
where for a 3-vector g
0 43 —Qq2
R@)=|-¢ 0 a |, (4.2)
@ —qa 0
hence R(q) is the matrix which satisfies
R(q)z =2z x q for z € R3. (4.3)
Therefore for a vector field ¢:R x R3 — R3
div,R(q) = rot .q . (4.4)

holds. Further we define

M S R [‘f], jo = [4’5], (4.5)

J J J

where usually o = ¢° + ¢* > 0 and ¢° > 0. The general system (3.1) then becomes

General equations in Lorentz frame:

M = % _(F_D>T] )
(F+D) M +R(H)

1 .
gatFo — div,(F — D) = p,
—O(F+ D)+ div,(M*+R(H)) =j.

All quantities F := (Fy, F), F := (Fy, Fy, F3),
and M?® (if symmetric), D, H
are uniquely determined by 901.
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It is 9T = F + 9, where § and ) are given in (4.1), and by (3.12) this leads to 90 = F + 9,
see (3.13), with

F, FT ~ 0 1—DT e
S=1r %Ms ’ 9=1p ~R(H) |’ (4.7)
C C

where F' = (Fy, Fy, Fy, F3) is the first row of §. Further, M? is in particular a symmetric
matrix but generally it is an arbitrary matrix (see system (4.13) without electricity).

Let the following remark be allowed: 1f M?® = Fyld, then
jS = —8tF + diVxMS = —(3tF + vxFO
Moreover, if F'is a 4-gradient, i.e. F' = V¢, then it applies 0;F = V. F; hence j* = 0.

Magnetic and electric case.

We consider the general antisymmetric situation, that is, the magnetic and electric case
with matrix § satisfying (equivalent to (2.6))

General Maxwell-Lorentz aether relations:

~ ~ 1
H=EC—P or H= ﬂ—G@GT — P with &figc® =1
0

(4.8)

X O _ET . 0 —PT 2 S+ ~T

=[5 win) P=[p mir) ®ocone

which means the following well-known formulas
Mazxwell-Lorentz aether relations:
- 1 W (4.9)
D=gFE+P, H=—B—-M" Eyuc°=1.
Ho

There are four fields in these relations, two are determined by &, which are the electric
field £ and the magnetic flux density B, and two kg-based fields are determined by ‘B,
which are the polarization P and the magnetization M?.

4.1 Lemma. Show that from (4.1) the equations (4.7), (4.8) and (4.9) follow.
Proof. 1t is for § and 9

1 ~
‘3 — _QGcilchiT
C
1 [-c 0
2|0 W

-1
fj - _Gc_lﬁGc_T

c2

R EAT B |

@ _F7T

o2
—F M
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The definition 5 = &€ — ‘,f? implies in all frames since &yfipc? = 1

~ ~ 1
$ =c2GHCT = 52GeGT — AGPCT = ﬂ—GGGT —p
0

by B = c2GPGT. This, by the way, gives in Lorentz frames

0 pT

S QP -T _
SB—C—QGC ch — | =P C%R(Ma>

Writing down the relation H= o€ — ‘i, that is

o -0 { 0 —&E" ] o
D C—2R(H) | &F &R(B) —-P c_QR(Ma> ’
gives the Maxwell-Lorentz aecther relations. O]

Gravity and electric case.

Now conditions are stated for § and €&, which imply the local existence of physical poten-
tials. For both fields these conditions are experimentally verified.

4.2 Assumption. The following is assumed for § and €:
(1) For § defined in (4.7) it is required

This implies that locally there is a Newtonian gravitational potential ¢9 (according
to the lemma of Poincaré), that is, F; = 9;¢9 for i > 0, or

F=V¢.

(2) Let for € in (4.8) Faraday’s law of induction in the version (see [10: §26 (26,5)])

al(’fjk + 8]‘@“ + 8kt’ilj =0for 5,k, 1 >0 (4-11>

be satisfied. Then locally there is a vector potential A (according to the lemma of
Poincaré) such that

E=VA- (VA"
which also can be written as € = (D A)" — D A. See also (6.1).
These conditions are necessary for the proof in Section 5.

4.3 Remark. The induction law of Faraday, that is equation (4.11), means in a Lorentz
frame that

divB=0, 0;B+rot,E=0.
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Proof. There are at most four equations of (4.11) which are independent of each other.
They are

) =1(0,1,2):  —09F1 + 0yBs+ 01FE> =0,
3, k1) =(0,1,3):  —03F, — 0By + 01E3 =0,
Ji k1) = (O 2,3) —03F5 + 0oBy + 0o b3 = 0,
1) =(1,2,3): 93B3+ 01B1+ 0282 = 0.

This is equivalent to the statement. ]

(4,
(7,
(g, &
(4,

4.4 Remark. It should be said that one has the following possibilities for assumptions
on § which contain Newton’s principle 4.2(1).

(1) One can demand from § that
0T = 08y for i,k = 0,1,2,3. (4.12)

This would (according to the lemma of Poincaré) ensure the local existence of a vector
potential W, i.e. §r; = 0; ¥y for i,k = 0,1, 2,3, hence

§=DV.
This satisfies 4.2(1) with the potential ¢9 := W,

(2) The property (4.12), with the assumption that § is symmetric, is used in the proof
of Section 5 to show the formula 5.9 for the gravitational case. Besides this it follows
from (4.12) that locally a vector potential ¥ exists with §x; = 0;¥y. This symmetry then
implies that 0yWy = 0,¢? for all k > 1. Here ¢9 := ¥,. This seems to be an assumption
on gravity in the absence of magnetism.

(3) Assuming that there is a vector potential U with
S = (D\IJ + (DY) )

then § is automatically symmetric. If we assume 9yV; = 9;¥, for j > 1, i.e. the symmetry
of the first row to the first column (as in (4.7)), then it follows

Ej = S[]j = ajqjo = 8j¢g (Wlth 9= \Ilo)

that is the Newtonian potential in 4.2(1). However under this assumption the proof of in
Section 5 is not done.

Gravity and magnetism.
Without considering the electrical phenomena the equations in (4.6) have the form

1 :
gatFo — div,(F — P) = o,
CO(F+P)+ divyM =j, M =M —R(M.

(4.13)

These are the equations in the pure magnetic case together with gravitation, i.e. omitting
electricity. The matrix M := M?® — R(M?*) seems to play the special role. This could be
relevant if one e.g. considers magnetic domains (Weiss domains).
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5 Newton-Lorentz force

We now are in a general frame and study the forces that 90T exerts in the mass-momentum
equation

div(owT +10) = £, (5.1)

The mass-momentum equation has the property that the test function is a covariant
vector. This is the case (see [1: Equ. (5.8)] with Z = DY) if the 4 x4 tensor T" := gvvT +1I1
is a contravariant tensor, i.e. T and the 4-force f fulfill the transformation formulas

TjoY = 3 VY5 Tt

¥R
4,70

on Z}/Z’iiT +ZYzzfz

7,7>0 i>0

(5.2)

Here p is an objective scalar, and the 4-velocity v is a contravariant vector, i.e.

UOY Z}/’L’Z 17

>0

so that gvv?, as it should be, is a contravariant tensor. We mention, that in a Lorentz
frame the 4-velocity is v = (1,v) and therefore the 4-momentum is gv = (p, ov), similar
to equation (4.5) which is j = (g,j). In the general frame we write for the 4-force f the
following representation

f= fyr +£07 (5.3)

where f; consists of the Newton-Lorentz forces, which are those forces that interest us.

Here f has the same transformation formula as f and thus contains the fictitious forces
(for example, the term with Coriolis forces), and f,; is a contravariant vector.

5.1 Classical Newton-Lorentz force. The classical version is given by

1
£, = [O%_z)] with

NL

_ 1
fnp = go°F + 0°E +j*x B + (’)(0—2).

Here the terms are as they occur in classical formulas, in particular in Magnetohydrody-
namics (MHD), see for example [5: 4 The MHD model], where because of the identity
coptoc? = 1 usually also ¢°F is neglected.

Proof. Here g = 477G and G = 6.67384-10711 k’;; is the gravitational constant. In fy, the
factor in front of the electrodynamical terms is set to 1, which is due to be in accordance
with the literature, see e.g. [5: 4 The MHD model, Equ.(4.7)]. Later we will see that this
means gk2eg = 1, which should be satisfied. Further, according to g* and j we have from
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Section 7 the following dimensions

0 | As kg -m . kg

el BlEE] = el

_ [T A k - k

Ploel BlaE] = el
m

As?
m? kg kg kg
== F|— == °F .
b A e B e )
Here ¢® is the charge density and j* the current density, both based on As. The kg-based

quantities are 0 = kog® and j* = koj?, see 7.3 and 7.4. The classical result in this form
also shows up in 5.2. O

5.2 Relativistic Newton-Lorentz force. Without magnetization and polarization the
relativistic version is given by

fy, =9G (S’js + :6ja) . (5.4)

This is the 4-force which arises in 5.3. In a Lorentz frame this is equal to the formula

1
~hh = e B
fyp=9| © 1° + 8o c?
o°F + S M) o°FE+j*xB
c

if § satisfies (5.10) and if § = £, & satisfies 4.2(2). Equivalently we write

0 ] g [—QSFO—F‘J'S‘FC:OE‘J'G}

fv, = . = .
=NL g QSF‘f‘gO(QaE +JaXB) C2 MSJS

what you can compare with the formula in 5.1.

Proof. Equation (5.4) follows from Theorem 5.3, which has been shown under the assump-
tion that § satisfies (5.10), which implies the local existence of Newton’s gravitational po-

tential in 4.2(1), and $) = &€ satisfies Faraday’s induction principle 4.2(2), which gives
the existence of B and E in 4.3. In (4.7) we defined

F, 1FT ~ 0 1—DT
8{: S ) 5;:): b
F C—2M D gﬂ(ﬂ)

so that fy; = g(GSjS + Gjr:)j“) implies

—— ——F" s —DT a
i SR —5F | 1, 0 5D
Int =8 I i +9 1 I
FoooSM D —SR(H)
¥ 1 1
—Q—2F0——2F0js —ZDOJQ
—g| ¢ c tg c
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since R(H)j* = j*x H. Now, if neglecting polarization and magnetization § = &€ or
D = &yFE and B = jigH by (4.9), we obtain finally

1 a 8__0 .'a 1
. C_QD.‘] i C2E1J _ g2 C_QE.ja
1. - = a :a o 0 a a
QaD—F?JaXH €00 E—FWJ x B QE+J x B

This is the assertion. To compare it with 5.1 we use o® = koo® and j = kj?, and set
1 =géokg = gk%ao, if this is compatible with measurements. O

We want to regard the Newton-Lorentz force f;; as an ”internal force”, i.e. we want to
write this force f,; with a term II,; under the 4-divergence, that is,

QHNL ‘I'fNL - £1 ) (5‘5>

where II; is a contravariant tensor and the vector fl denotes fictitious forces. Thus (5.1)
becomes the differential equation

div(ove™ + Iy, + 1) = £, + £, (5.6)

with general force fl —|—fo containing fictitious terms.

We now derive the form of the force f; which is given in (5.4). We do this through the
proof of (5.5) with a general formula of the matrix I, . This result is the main theorem
of this section. We assume that we are in a Lorentz frame and that magnetization as well
as polarization is set to zero. We summarize the general formulas for the matrix 9

M=3+9H, §=cGFCT, $=c2CHAT, 57)
M = 2GNGT  implies N=F+ 9. '

which are important for the result.

5.3 Theorem. If (5.7) is true and § = &€ (no polarization and magnetization) then
(5.5) holds with

Iy, = ghmG — C%(mt(;—laﬁ)s,

£yr = -5 (G5 +95G7) = 9(GF)" + G,
2

— Z(G%) 2(GH).

2
Aow = A* + A AS:%(G@)T:(Gg), A®

This is true under the assumption that we are in the Lorentz case, and that § and & can
be written as vector potential, see in 4.2(1) the Newtonian gravitational potential and in
4.2(2) the Faraday induction law, and that for § in fact (5.10) is satisfied.

Proof. We have to show that

1 L
@(§(9}IG‘1SDI)S _ AgmG) — GF) +GH". (5.8)
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Now, from 3.2 we know that }vﬂ =% and TS is j* plus a term depending on the matrix M.
This additional term in (5.8) is subsumed in the term f; of equation (5.5). Therefore on
the right side of (5.8) the term

1 s o
ngL = GFJ"+ GH)
is leftover, and therefore (5.5) is verified. To prove (5.8) we compute

1 B S 1 _ _
g(DﬁG 19)?) = @(WG Im+m'G IQJTT)

- 2%2((9)%8 + MG NS 4+ M) + (M — MA)G (M — M)

1
= — (MG + MAGT MY .
c
Therefore it is enough to show
1 ~
div( MG~ NG = GF
c
1 —
@(gsz*@*sz* — A“G) —GH
The first equation is shown in (5.11), and the second in (5.13). O

That these are quite general formulas is shown in the following lemma, which we will use
in the second proof of the electric part.

5.4 General lemma. It holds for each matrix M

div( MG M) = GNT+ #(N)
Ri(N) = ¢ 2}; (0;(GN)ik) (GNG)iy = > (9;(GN) i) My, ,

ik

where the matrix N is defined by M = c2GNGT, and j := div M.
Remark: Therefore only the remainder & has to be computed.

Proof. Due to the product rule for the i-th component it applies

ij

1 _ 1 _
;aj(c_QMG ‘M) = 5 ]zk;aj«MG a5
= > 0;((GN)ixM,;)  (wegen MG~ = ¢*GN)

ik
= ZR(GN)ikaijj + Zk (8;(GN)ix) My
j J

%:(GN)M(MM)I@ + Zk (aj(GN)ik’)Mkj :

That is the claim. ]
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We now prove the equation (5.8) separately for gravitational and for electrical phenomena.

Gravity part: In the gravitational case it is 9 = 3+ 9 with

— 2QRGT — =
§=c"GFG, 3—(&]‘)1‘]’_ F %MS ’
c

where F' = (Fp, F') and F' = (Fy, Fy, F3). In the following M := M? is a matrix that later
is assumed to be symmetric.

5.5 Lemma. With 9 := § we get

. g KRF' T IFP  F'™™
Sl = |t c2 c? c2
G =1 o T T MF M2
I N 2
Proof. 1t is . .
Loy TR FT] —=F, —=F"
GS = c? 1 = ¢ f )
0 )| @M F =M
- | CZ
and therefore 1 1
T
_ 2 _ 2 —afo —5F 1 0
M =c’GFG =c C f 2
F —M 0 Id
c
1 1
—F —=F" 1
_ C2 C41 0 ](_32 _ gFO —FT
-=F =M —F M
c
Therefore, we have
1 1 ¢
_ _ 1
1 ~— — — FO F - T
—29)/{(}719)/{ = (G3>m = CQ ](_32 C2 FO F
c _
F c_2M F M
Lo 1o 1 1o
B —C—4F0 + §|F| gFOF - C—2F M
1 1 1
—FRF—-=MF —FF'+ =M’
c c ¢
F2  FF" |F]> "M
— | c? c?
RF o | mMF
2 2 o2
O
5.6 Lemma. The first matrix on the right-hand side of Lemma 5.5 is
F2  FyF?T
@ | = _GF®GE
FyF =TT
0 _ppT
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Proof. 1t is
1 1
—F? —=FF" 1 1
¢ et o mah|e| Taf| =crecr.
-SkRF  FF! F F
c
m
For the following lemma we assume
0;Fy = OpF; for all j,k=0,1,2,3 . (5.9)

5.7 Lemma. If the assumption (5.9) is satisfied then
div(GFaGE — XG) = —0* GF,
where \] = %E-GE and ¢° := div(—GF).
Remember: This contains the classical formula
div(F®F — Md) = —oF,
where \ := $|F|? and o = div(—F). Its true if F' = V¢¥.

Proof of the classical formula. Because of 0;F}, = Oy F} for j,k > 1 the k-th component of
div(F®QF) is

Y 0i(FRF ) = > 0;(Fply) = Fy ) 0;F; + > Fj0;Fy,

j>1 j>1 i>1 j>1
. . 1
= FpdivF + 3 F;0,Fy = Fr divF + 37 ak(§Fj?) = —0F), + O\,
j=1 j>1
if A = 1|F|% Therefore div(F®F) — VA = —oF. O

Proof. Because of Lemma 5.6 we have to show

Fy A R 1
div | ¢ F]g2 2 _ gg Ey .
-— FoF-M\Id —0°F
C
It is \j = FeGE = —55F§ + §|F|” and therefore

1 . o1 1
dlv(gFOQ + A, —FyF) = dw(@Fo2 + 5yF|2, —FyF)
1 2 1 2 :
= Gt(2—C2F0 + §|F| ) - leFQF
1
= —ZFOatFO + F-@tF — F'VFO — FO divF (lt is atF = VFO>
C

1
= FO(C_28tFO - leF) = QSF() .
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For the k-th component of div(—5FF, FQF — A{Id) it holds

1 1
@(_C_zFOFk’ F.F — \eg) = _gat(FOFk) + div(FF) — O]

1 1
| 1 | 1

' E— ' = Oply = OpF
s 1 1 2 2 s s
by the choice of Aj. O
5.8 Lemma. For the second matrix on the right-hand side of Lemma 5.5 we get
di |F|? —F™™  [—j*F
daiv —-MF M2 - MJS
FOF, — Y Myd,, F,
Jjz1
+ ;
H | (-0 Fi+ X0, M- M)
j>1 k>1
where j* := —0,F + divM.
Proof. The upper line of the 4-divergence is
div[|F|*, ~F"M]=0,(|F*) - div(M"F)
= 5 ((F?) = %2 0, (M )
l J
= 5 ((0F — %204, M) Fy + RO Fy — Y- My, )
l J J
— e F + 3 (RO — 5 Myds, )
l J
and the k-th component of div[—MF, M?]is
=5 (= M) + 3 0., (MiaMyy))
l J
= ZMM( — O F ) 0y Myy) + ( — OMyy - Fy + ) Oy My - Mlj)
l J l J
= Mj®+> (= O Mu - Fy + Y 05, My - My) .
l J
O
We now make the assumption
(5.10)

@%kl = aijl for all j, k‘,l = O, 1, 2, 3.

This for [ = 0 is the condition (5.9) where Fo = F;.
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5.9 Lemma. If § is symmetric and (5.10) applies, it follows

FiduF — Y Mio,, Fi

j>1 4 3. s
=c"div(\;G
1221 ( OeMyy - Fy + Y Op; My - Mlj) AR
7j>1 21
with Sl
Lo !
PEEES 2 ;( Ol + Z [3l?) = 2 ; (Bri)zo G (Bt -

Proof. Let § = (Fkl)kJa then
EFiOF) — 3 MOy Fy = Fy0p Foy — c? > Flj0s, Foy
j j

= FOl(?tFOZ — C2 Z EjatF}l (since GjFOZ = 8tFﬂ)
J

(8t|F01|2 — C2 Z@t|F]l| ) (SiIlCG Ej = jl)

l\Dll—

=—5@Q~+%M+zr|)

and

—O0My - F; + Z Op; My - Myj = —C* O Fy - Fo + ¢ Z O, Frr - Fij
7 j
= —CzatFkl . FOl + C4 Z a:z:j Fk‘l . F’jl (Since E] = jl)
J

= —025)sz01 . F()l + C4 Z &Cijl : El (since 8ijl = 6ijl)
J

4

C 1
= S0 (= S IFul+ X IFal?)
¢ J
Hence we obtain

FduF = 2 M, i
J

:[%%1CJ%P ZMM)
< — O My - Fy+ > 0, My - Mlj)k 'V, 2¢?
J

the assertion. O

Altogether it follows with M = § in the Lorentz case under the assumptions made above

1]~ -
@(gzme—lsm _ A8G> — G35,
M= F = °GFG, (5.11)

2 ~
A= %(GS)T:(GS), = divon.
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Because, according to 5.5 and 5.6, it is
_MSF (MS)2

1 —_— —~ 1 2 o S T
C—szG—lsm = -GF®GE + 2 { ] (M"F) }

and, according to Lemma 5.7 and Lemma 5.8 and 5.9 it is

div( ;MG )

: s s 1 : s —j%eF
~ a6 + o GE + 4 (canoye) = [ )
1 .
: s s s | == F L | —j°eF
= i((_)\l + C2)‘2>G) + 0 (3}271 0 C_2 |: ]\JJSjs :|

= ﬁ((—)\i + 02)\3)(}) + s
QSF + 2 J'S
Now |
—E(QSFO +j%F) 0’ Fo +JJ\S4‘8F azrE. 5 {Qs}
MS - s S = ] ) J = S ’
oO°F + - ,]S o°F + 2 ] j
and

1 2
X = =X+ N = —oFeGE + 5 ¥ FusGEy
2 2=
c? 1
- <_ = 2 FoGyFjo+ > FZ”G”FJ'O

2 €% i>0 ij>0;1>1
2
c
=5 Z FixGuGijFj = g(SG)t(G%’).

This shows (5.11).

Electric part: In the electrical case, when no magnetization and polarization is present,
we have, for the antisymmetric part of 91,

H=cGHG, $H=5¢€,

where ¢ is the electric field constant and &, = koeg the kg-based version, see Section 7.
We have the fundamental equation &yjigc® = eopuoc® = 1, if respectively poy = kojip. In

particular,
o Dt o —ET
H = [—D R(H)] , &= [E R(B)} ’

R 0 —5E"
[D lR(H)] =N =5C= L-OE so%(B)] ’
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thus the known representations D = &g F and B = JigH. Now we suppose that the Maxwell
equations are satisfied, that is, the antisymmetric part of (3.1), which is Ampere’s circuital
law, and Faraday’s induction law 4.2(2), which is described in the Lorentz case in 4.3,
which is

div,D = 0%, —0;D +rot ,H = j*,
div,B =0, OB +rot ,E=0.
Setting now
1 1 . 1
D:éE, ]{:7_B7 @0«::_907 ja::_ja7
’ Ho ko ko
the Maxwell equations become
. _ 1 -
godiv, E = 0%, -0 + —rot . B = j*,
Ho

div,B =0, OB +rot ,FF=0.

We begin with the following theorem (see [1: VI Theorem 7.3]), where the second formula
is the Theorem of Poynting.

5.10 Theorem. In the Lorentz case we have
0°E +j*xB = —0,(eoEx B)
) 1 €02 1 2
+d1vz< cE®QFE + —B@B) — (X|E? + —|B Id),
(E@E + - BwB) - (F1E7+ 5 |BF)
€

< 1 ) 1
—Ja.E = @t(EO\EP + Q—MO‘BP) + leI(%EXB) .

Proof. In the Lorentz case the Maxwell equations are

(1) div,B=0 (IT1) o div,E = g
1 _
(II) OB +rot,E=0 (IV) —aoatE—l—M—rotzB:j“.
0
Multiply
1
(I) by —B (II1) by E
Ho
(IT) by x(goF) (IV) by xB,

sum up and get the assertion. Indeed, the sum is

0"E+]*xB = —eo(0,E)x B+ eo(0,B)x E

1 1
+—(rot ,B)x B + go(rot , F)x E + —(div,B)B + ¢o(div, E)E
Ho Ho

1
= —ant(EX B) + Iu— div,Pg + o div,Pg ,
0
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where 5.11(1) was used. This proves the first formula. For the second we compute
(LUEP + —L|BP) = E+d,(coE) + —Be0,B
5 210 t\E0 1o t

1 - 1 1 T
_ E-(—roth _ja) — —Berot  F = ——din(EXB) —j%E.
Mo Ho Ho

This is the second formula.
5.11 Auxiliary lemma. Let w be a vector valued function.
(1) If P, :== w®w — 3|w|?Id then

divP, = (divw) w + (rot w) xw .

(2) R(w)R(w) = w@w — |w|*Id.
Proof (1). The k-th component of divP, is
(divPy)e = > 95(wpw;) — 3 wiOw;
j j

= wy »_ 0;w; + Y (Qwy, — Opwy) - wy
j 1

and the k-th component of (rot w)xw is, when (k, 1, 5) is cyclic,

((rotw) xw), = (rot w);w; — (rot w);w;

k
= (@wk — ak’LUj)’LUj — (8sz — Blwk)wl
Jw;

+ (@wk — 8sz)wz = Z(@lwk — 8kwl) W .

l

= (E)jwk — 8kwj

Proof (2).
0 Ws —Wa 2
R(w)R(w) = | —wz 0 wy
wy  —Wq 0
—U)§ - U)g w1W2 wi1Ws
= wiwe —w3 — w} wWows = wRw — |w|’Id.
wW1Ws3 WoW3 —w% — U}%

We rewrite the equations in 5.10 as an equation in R%.

5.12 Lemma. From 5.10 we have

v 1
1 __ _—
= —div c? c?

< 1
Ho -5ExB S E®FE+B®B-vId
C C

Cizja-E (ExB)"

0"FE +j*xB

9

where v := 55| E|> + 3|B|%. Remark: It is j* x B = R(B)j".
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Proof. Define v as in the assertion. Since gqpoc® = 1 from 5.10

Lo Yo fmrs Ligey - Lav (2
" E = 628t(2|E| +2MOyB|) C2d1vl.('u0E><B)
1 1 1 . 1
= %@( — gy) — %dlvm(C?EXB)
0°E +j*xB = 0,( — eoExB) + div,(e0Pg + Pp)
1 . 1 1
:%M(_C_zEXB’C_ZPE—'_PB)’
and 5 Pp + Pp = 3EQFE + BB — vld. O

5.13 Theorem. It is

1
Gej = - div(GEGEG AeG).
0

Here A¢ := 5 (%|E|* — |B|?).
Proof. Multiplying the result of 5.12 with kg we obtain

1
1, v _Lipxn
2k - L ; & ] ! ) : (5.12)
BB Ho ~5ExB S E®FE+ B®B —vld
C C

The matrix is GEGEG — A\¢G and the left side is G&j*, as we will now show. It is

1 T a 1 a
ce=|" 2F |, G@jazee[ﬂz 2 F
E R(B) ] 0"E +i°x B
Moreover, since EYR(B) = —(R(B)E)", we have
1
1o 0 SET
geceG= |V @f _—
E R(B)||-5F R(B)
1 1
[ e Lwemr
— ! :
~SR(B)E —E®E+R(B)R(B)
therefore with arbitrary Ae
1,1 1
—— (5B = Xe) __Q(R(B)E)T
GEGEG — NG = | ¢ X c
_c_2R<B)E SEOE+ BeB - (e + |B]*)Id

This matrix is the same as the right-hand side of (5.12) if
1
—2|E|2 —Xe=v and A¢+|BPF=v.
c

This can be satisfied if A¢ := 3 (Z|E|* — |B]?). O
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Altogether it follows with M = $ in the Lorentz case under the assumptions made above

m(éﬁa—% . A“G) = GHi,

M= §H = 2GHG = ?5,GEC (5.13)

¢z ~T o~ ) )
/\“:Z(Gﬁ) H(GH), = divon.

Because it holds for every A

1~ —
gm—lfm — \G = %, GEGEG — \G
= 55 (GEGEG — AeG)  if A = Pg) e,
1
fio

= &0 (G@GQEG — )\Q;G) s

since c?&gjig = 1, and therefore because of 5.13

1~ -
@(C—ng—lsm _ AG) — 5,GEj" = GH", if

2

2 2 2
) T N a1 H
A= che = S (GIRBP — lRBP) = 3 (5 - |5 )
1
¢ [ 0 DY 0 D" © R GH
~D —R(5 1
HE? RED] b rgm]

Independent proof in electrical case.
With 9t := MA = H = c2GHGT applies to the antisymmetric part due to 5.4

1~ ~ ~
div( MG = GH* + 2(5).
¢
If we set in the remaining N := $ so we apply

5.14 Theorem. If N = (Ny), -, is antisymmetric and satisfies
O0; Ny + OxNj; + ONj, = 0 for all j,k,1 > 0,
then it holds in theorem 5.4
Z(N) = div(vG), v= C;(GN)T:(GN).
The assumptions for N are equivalent to those for & in 4.2, thus
@(C—zﬁe-léﬁ . I/G) — GHi.

This is the same result as in (5.13).
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Proof in Lorentz’s case. 1t is especially (in the Lorentz case Ay = —C%, Am =1 form > 1)
Gij = >\152j y )\Z = const.
For the i-th component of Z, i = 0,1,2,3, we have by definition

é@i(N) — ij 9;(GN)ix - (GNG)y;

= =2 0j(NG)rGu(NG);; = = > 0j(Nidi) A (NijAj)
ik

jkl
hence 1
—2Zi(N) = A Z-,;Ai)‘kaiji - N
J
==X > AjAe(O;Nji + Ok Nij) N
jk
(it is Ny = —Njx and Ny = —Ny;)
= N 2o N ARON - Nk = A 2 N A0k Ny - Ny
gk Jk
N2,
=\ Z )\]/\kasz -\ Z /\])‘k:ak‘N]Z ’ Njk‘
gk jk
N?
= ai(/\z- Z/\j)\k.—]k> — 2 Ok(Njidi) A (NjrAr) -
gk 2 jk
1 1
1
It follows
c? N7,
Hi(N) = ——=0; (AiZAMk—J> :
g I\ 2 AT
If now
c? 9 c? ¢’ T,
v == L AMNG = 7 2 (GN)i(GN)ji = (GN) "3 (GN)
jk ij
we get

Zi(N) = 0i(Av) =3 0;(vGyj) = (div(vG)); .

J
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6 Vector potential

The assumptions in 4.2 are so, that there exist (locally) a gravitational potential ¢¢ and
a vector potential A with

F=V¢! €¢€=VA- (VA"

where we take the Lorenz gauge condition div(GA) = 0 for A, which is the same for all
observers. In a Lorentz frame this means

A= (~6°, Ay, Ay, As), 506+ diveA = div(GA) = 0. (6.1)
If € is expressed by F and B as in (4.8)
o —-ET] T 0 (OoA — VAg)*
{E R(BJ —E=VA-NA = 9a,-04 (04— 0A), ., |

then £ = VAg — 8)A = —(V¢* + 0, A) and R(B) = (0:A; — 0;4), ;o1 = VoA — (Vo A)"

Therefore the above equations for F' and € become
Fo =097, F=V¢,

(6.2)
E=—(V,¢¢+0,A), B=rot, A.

The existence of the scalar potential came from the time dependent version of Newton’s
equation and the vector potential was equivalent to Faraday’s law of induction. Therefore,
if we plug (6.2) in the definition of 9, the equations (3.1) become the full system of
differential equations in Lorentz frames. Let us do this.

From the representation for 9t in (4.6) and the Maxwell-Lorentz aether relations in (4.9)
we obtain

1

o — gg —(F=D)"
—(F+D) M°*+7R(H)
1R —FT 0o P" 0 pE
B Y +[—P —72(./\4@)]+ —Gk ZR(B) |7

where in detail with Newton’s gravitational potential 4.2(1) reads
1

—F, —-F"| _ l?atgbg —(Va)"
C - C
~F M . v M?*
1
e
“o M —ge1d]  LVed? 0]
0 15‘0ET 0 —0(V,0° + 0,A)"
_ 1
—&FE ﬂ—R(B) E0(Vo0° + 0, A) ﬂ—(va—(va)T)
0 0
g g
200" —(Vae?)" —500° —5(04)"
= 1 + 1 ;
00, A ——(V,A)" 0Vep®  —V,A
Ho Ho
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so that the matrix 991 becomes

1
S0,(¢° +200°)  —(Vaee® +50V.0°)" 0 Pt
m=|° 1 T + +9
E00, A —ﬂ—(va) —P  M*®—09,¢1d — R(M*?)
0
with z
—C—gatqse —0(0,A)"

0= )
V0" = Vet =VA+ 01
0

We obtain here a form of the matrix 9t which leads to the well-known wave equations of
the related vector potentials. To be concrete the matrix has the form

¢ =97 +50¢°, My:= M — 0,¢1d — R(M*),
1
50 ~(V.¢ - P) (6.3)
m = 1 C 1 + D ,
— 0, A—P M, — —(V,A)"
HoC Ho

with the following theorem.

6.1 Wave equations. The matrix 9 has the form (6.3), where because of the gauge
condition the matrix O is divergence-free. Hence neglecting the Coriolis term the general
system (3.1), that is, div9t =j = (g,j), becomes

1 .
gﬁftﬁ—i- dlvm( — Vz¢+P) =0,

, (6.4)

floc?

1
0

Therefore, if P =0 and My = 0 we have two wave equations.

Proof. We have

13
— = 0y° —&0(0,A)" —2d] 1
divo = div c ! = | Ly | (500 + div.a)
eV — V¢! —V, A+ 0,¢°1d o 1 °°
Ho
which vanishes since the Lorenz condition has been postulated. Il

Here the potential ¢ = ¢9 + £3¢° leads possibly to a new interpretation of gravity. One
has to compare this approach with measurements, which are related to the study of the
interaction of gravitation and electromagnetic effects or the interaction of gravitation and
magnetization.
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7 Dimension

The combination of the kg-based gravitational quantities and the As-based electrody-
namical quantities needs some explanation. Essential is the conversion factor ko, with
dimension kg/As which we write as

o[le] -

and which will appear in 7.4. We assume coordinates y = (¢, 2) € R*. The generic system
of 4 equations in these coordinates reads

*x

a(ol)) + diva (o | 2] ) =5[]

s
2
* M . M xm
oo [7]) + div(o {—} ) =5
Since 0; is equipped with dimension [%] and div, with dimension [%}, the system is
consistent for every fixed choice of [%]. Hence, if in this system one quantity o with units
is specified, then the units of all other quantities o are defined.

(7.2)

First, consider the mass-momentum system div(gvv™ + II) = f which in a special case

means
1 0 0 ~ r
o=u] m=[o ] =[5}

7.1 Mass-momentum system. In Lorentz case (7.2) reads

o) + dmalen [22]) =1 [2]. N
2 7.3
at(gv [*Tm} ) + divw((gva +10) {*:; } ) =f [*S—T] ,
where
*:%, hence Q{%} , v[?],
and thus

kg kg kg
— IT f .
' {m%} ’ [m 52} ’ [m%’z
Now we consider the equation divOl = T and we take seperately the cases of the sym-

metric and the antisymmetric part. First the case of gravity, that is Newton’s law in the
relativistic version.

7.2 Newton’s law of gravitation. With F = (Fy, F, F», F3) = V¢? the equations in
(4.6) read in the form (7.2)

62(% []) + div,(— F [*Tm} ) =¢° H ,

o= F [ 4 aiv, (s [m } ) =5[22

S S
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It is

and therefore
U ] D [ ol i g 8 i
2

This is consistent with

@9 {@1 ,  hence Fy= 0,¢? {k’_g] , F=V¢ {—} )

m ms

s | kg s | kg
w i) ]
m s m=s

7.3 Magnetism kg-based. The equations (7.2) are, because of (4.6),

Finally

Now to the magnetic part.

a(01)) + diva (D [ =] ) = 0" [ 5]
*m % > *m (7.4)
at(—D[7])+ divx(R(H)[ 5 })zj“ [?] .
We know
“ {k—i} , hence *:kij,

and with this it is known

o A R B S I B N
m2 ms m2 m2s

The purpose of the constant kg is to transform the quantities from the As-based version
into the kg-based version.

7.4 Ampere’s circuital law As-based. We now set
= . 0 D 0 D
g)—kOﬁ l1.e. |:—D R(H):|—k0|:_l—) R<_):|’
D=koD, H=koH, ¢"=koo", j*=koj.

This implies, because of (7.1), the well-known dimensions

R R P B !
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A s?

or with * = 3
m

a(01)) + diva (D[ =] ) = 2" |

_rxm _ [*m? _xkm (7.5)
(= D[*]) + a,(Retn) | 25| ) =1 [,
s S S
With the constants €3 and py we set
1 F -
g9 = 8.854187812 - 10" “—, &y = ko&p,
m
_ 1 1
eE=D—P, thus D=&E+P, and o":=—p"= 0",
€0 €0
_ H _ Mo _ 1
—Ar - 1077 = == = S
Ho m ) Ho ko’ EoMo = Eoto 2

po(H + M) =B, thus B=fo(H+ M), and j:= ugj" = fioj”.

It is with different units
o[-l - law )] w5 - [l - [5)

and (7.5) becomes without polarization and magnetization

div, E = Qel ,

1
——O0F +rot, B = i
c

o= (5] m= [z

The only difference in the mass densities is that in connection with Ampere’s law one uses
As (ampere seconds) whereas in connection with the mass-momentum system one uses
kg (kilogram) or g (gram).

where
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