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The Behavior of the Free Boundary
for the Dam Problem (*).

HANS WILHELM ALT - GIANNI GILARDI

1. - Introduction.

In this paper we study the behavior of the free boundary for the dam
problem near the given boundaries to reservoirs, atmosphere, and impervious
layers, where we restrict ourselves to the two dimensional homogeneous case.

We start with a solution of the problem as it was obtained in [3] by ap-
proximating the free boundary problem by models for saturated-unsaturated
flow through porous media. That is, a pair u, y is a solution of the dam
problem, if

Here S~ is an open bounded connected set in R2 with Lipschitz boundary and
denotes the porous medium. On the boundary of ,S2 three relatively open
sets are given, Sres, Which denote respectively the boundary to
reservoirs, to atmosphere, and the impervious part of the boundary (fig. 1).
It is assumed that these three sets are disjoint and that the boundary 8Q
is the union of their closures. On Sres and Sair the pressure is given by a
function uO E CO,1(R2), which is non-negative on Sr. and zero on Sair (which
means that we do not consider the case of a capillary fringe). The set of

(*) This work is partially supported by Deutsche Forschungsgemeinschaft,
Heisenberg-Programm (W. Germany), and by the G.N.A.F.A. and the I.A.N. of
the C.N.R. (Italy).

Pervenuto alla Redazione il 23 Novembre 1981.
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Fig.l

admissible function in (1.1) and (1.2) is defined by

In (1.2) e denotes the vector (0, 1).
Formally, y the variational inequality in (1.2) is equivalent to the diffe-

rential equation

where v = - (Vu + ye), and the boundary conditions

We are interested in the behavior of the free boundary 8(u &#x3E;0} at

points of detachment from the fixed boundary and we will show that the free

boundary behaves as indicated in fig. 2-4 (see also [10], 2.2.1). Our proce-

dure is as follows.

First we summarize the basic properties of the solution related to the

Lipschitz continuity up to the boundary 8Q (section 2). This allows us to

consider linear blow-ups (2.5), which are the basic tool in order to obtain
the local results in sections 5-8. We will see that u is Lipschitz continuous
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in S2, except at the separation points between reservoirs and atmosphere
in the case of overflow, and except points at which the compatibility con-
dition is violated.

In section 4 we prove that y = which says, that in the case of a

homogeneous medium the solution consists only of saturated regions where
~c &#x3E; 0 and dry regions where y = 0. For general inhomogeneous media
this is not true (see [3] Beispiel 4.6). The comparison lemma in section 3
together with our local results about the free boundary leads to a uniqueness
proof (9.3, see [9, 13]), which shows that other different approaches gave
the same solution ([1, 4, 5, 12, 14], and for further references [6]).

The regularity of the free boundary in the interior was proved in [2 ],
and results about the qualitative behavior were obtained in [7, 8, 11]..
In [7, 11] global arguments also gave results about the tangent of the free
boundary at endpoints in the special case of a rectangular dam. In [8] it
was proved by local methods that the free boundary is tangential to the
fixed boundary at the atmosphere on the top. In our paper we use only
local methods in order to study the behavior of the free boundary near aS2..

In section 5 we deal with the free boundary near points on the surface
of reservoirs. Using a class of linear super- and subsolutions we prove that
there are three possibilities: overflow, a horizontal free boundary, or a right
angle between free and fixed boundary (fig. 2).

F I g . 2 . I Fig. 2. 2 Fi g. 2. 3

In section 6 we study the free boundary near points at the atmosphere.
We show that for points on the lower part of the porous medium (vertical
points of 8Q included) the free boundary has a vertical tangent (Fig. 3).
On the upper part of the porous medium the free boundary is always tangen-
tial to which was proved in [8].

In section 7 we consider free boundary points near the impervious part
of oil. Using blow-up techniques we prove that the free boundary is tan-
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rig.3.1 
~ 

Fi g. 3 . 2 Fi g. 3. 3

gential to 8Q or horizontal, where the case of a non horizontal tangent ap-
pears only at points on the upper part of the porous medium (fig. 4). Chang-
ing the porous medium afterwards one can construct examples for fig. 3.3
.and fig. 4.3, where the set {u &#x3E; 0) is an arbitrary closed subset of 8Q.

Fig.4.1 Fig.4.2 Fig.4.3

Whenever the porous medium lies above its boundary near the point
-of interest, we need the assumption that there is some dry neighborhood
above this point in order to start with our local arguments. However, under
suitable conditions on the global data this assumption can be verified (see
4.6, 9.2). Local counterexamples are given in 5.2.2.), 6.5. In all cases we

assume that the fixed boundary 8Q is of class near the detachment point.
’The only interesting remaining case are separation points between atmosphere
and impervious parts, which is treated in section 8, where we allow the fixed

boundary to have two different tangents at such points.
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Although we deal with homogeneous porous media, it is clear, that the
local results also can be obtained for inhomogeneous unisotropic media under
certain regularity assumptions on the permeability. In the unisotropic case
this would change only with the direction of the possible tangents for the
free boundary, which can be computed formally. However, if there are jumps
in the permeability, the situation becomes different. In general, the free
boundary is no longer a smooth graph (see [3], Beispiel 4.6), and it would
be of interest to study the local behavior of the solution at least near free
boundary points in the interior. Another important generalization is the

three dimensional case, for which we have limit curves instead of limit points
of the free boundary on However, we think that some of our techniques
could be used in order to prove that at almost all points of such a curve the
behavior is as for the two dimensional problem, if we look at a vertical sec-
tion to 8Q.

In section 9 we give global applications of the local results in the previous
sections. First we show that the solution is unique up to ground water lakes,
where we assume that the boundary sets consist of a finite number of smooth
curves. Then we study the stability of the local behavior of the free boundary
with respect to small perturbations of the geometry of the dam. Using this
we can construct examples which show that actually all cases in fig. 2-4
are possible.

2. - Basic remarks.

Since our techniques in section 5-8 are of local nature, it is convenient
to define

2.1 LOCAL SOLUTIONS. If B is, for a ball, we call U E Hl,2 (B)
and y E local solution in Q r1 B, if u is a solutions in this region as
~~ ( 1.1 )- ( 1.2 ) with respect to its on aB as Dirichlet data, that is

with boundary values

and for test functions ~
the inequality

holds
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The maximum regularity for solutions u locally in Q is the Lipschitz
continuity, which was proved in [3], Satz 3.6. In the special case of har-
monic functions this proof is more transparent, and therefore let us repeat
it here.

2.2 LEMMA. I f u, y is a local solution, and if a ball Br(x) c S~ r’1 B r1 fu &#x3E; ol
touches the free boundary Q n B n &#x3E; 01, then

with a universal constant C.

PROOF. We can assume B,(x) c S~ r1 B. For small b &#x3E; 0 let v be the har-

monic function in D := B~ 1 + a)r( x )~Br~2 ( x ) with

Then [3], Satz 3.3 (see proof of 3.4) implies

Since D contains a free boundary point, u is not harmonic in D, hence the
left side is positive. We conclude is a monotone function of the dis-

tance from x)

On the other hand

using Harnack’s inequality.

2.3 REMARK. 2.2. implies (see [3], Satz 3.7) that u is Lipschitz continuous
locally in S~. If D cc S~ is connected and contains a free boundary point,
the supremum and the Lipschitz constant of u in D depend only on the
geometry of .~ and D.

PROOF. Let x : = dist (D, and ro E D n 8(u &#x3E; 0}. Then 

we find balls Bx(x~ ) c S~, j =1, ... , k, with and EBx/4(Xj), I where
k depends only on x and the diameter of D. Then by 2.2

is non empty .
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and by Harnack’s inequality

We get

Later we will use the Lipschitz continuity of u up to the boundary. Therefore
let us prove another version of 2.2 including the fixed boundary.

2.4 BASIC LEMMA. Let u be a local solution in S2 r1 BR, and assume that
Q n BR and aS~ r1 BR are connected, and that the curvature of r1 BR does
not exceed If Q n BB/4 contain,8 a free boundary point, then 

q ‘

and

Here C is a universal constant. 

PROOF. By homogeneity we can assume R = 4. Let with

u(x) &#x3E; 0 and B,(x) the maximum ball contained in B4B( S~ n &#x3E; 0~ ).
Then B2r(x) contains a free boundary point and because of the assumption
on the curvature of aS2, w e have x f E c SZ for some point Xg. Then,
if Bar(x) is contained in S~, we conclude as in 2.3 , 

.

which, in particular, proves 1). If is not contained in .~ we have (now
let 6 = 1 /4 ) ’ 1
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for some point x1 E and as in the first case we can estimate

Now let P. be the Poisson kernel of .~~~~(~1) r1 SZ with pole at ~;. By the

assumptions on 8Q we have

which proves the second inequality in 2). Moreover

and by Harnack’s inequality the second term can be estimated by

which is the first estimate in 2). For 3) use the Green-Neumann function Gx,
that is, 

- -

Using Harnack’s inequality again we see that

.I. V ’-’.41"" V1. U1 My lp 1..l.ppVllNVI.L uy

the blow-up limits at this point. These blow-ups have the advantage that
they are globally defined, and that they involve only the data at the point xo,
hence they have analytic boundary data and satisfy an analytic differential
equation, even in the case that we start with a more general equation for u.
Moreover, many free boundary problems are closed with respect to blow-up
limits, therefore these limits are global solutions. In general the definition
of this limit has to take into account the homogeneity properties of the special
problem. In this paper we are interested in linear blow-ups at the boundary.
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2.5 BLOW-UP LIMITS. Let u, y be a Lipschitz continuous local solution
in Q n Bll and assume that ’

1 ) 0 E aS2 with = 0,

2) Q has normal v* at 0, ,

3) near 0 the sets aD r1 {:l: 0153. (iv*) &#x3E; 01 belong to Sair’ or Simv *

(By continuation we can assume that u and y are defined in B,,, preserving
the .Lipschitz constant for u). Corsider the blow-up sequence

Then there are f unct2ons ~c* E and y, E such that for it sub-

sequence

u* , Y * is a global solution in S~* : _ {~’~0} (that is, a local 
Q* for every R) with respect to boundary data induced by 3).

PROOF. ur are uniformly Lipschitz continuous and yr are uniformly
bounded, hence we have the above convergence properties. To see that

u*, y* is a solution, denote by etc. the corresponding boundary
sets of and Q*. By 2 ) and 3 ) every 
with compact support and ~ = 0 on ~gy ~0 on can be approximated
strongly in by functions Cr with these properties on Then

2.6 DEFINITION. In general one considers blow-up sequenoes U’r with

respect to balls Br(zr) defined by

for an arbitrary sequence zr r1 (u = 0~. If the boundary sets of the blow-up
domains ,S2r :_ converge in an appropriate one has the

same statements as above.
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3. - Comparison lemmas.

The general definition for super- and subsolutions is stated in 3.1, but
because of technical details near the fixed boundary we need some additional
regularity properties in order to prove the comparison lemma 3.2. However,
using the results of sections 4-8 this lemma implies that under certain con-
ditions on the data the solution is unique (9.3). Another comparison lemma,
which can be used for certain explicit subsolutions, is stated in 3.4.

3.1 DEFINITION. Let with and with 

~y~l. We call u, y a

, 1) supersolution, if on and

for every non-negative’ E Hl,2(Q) vanishing on Sres U Sair i

2) subsolution, if u c u° on l~ 7 and

for every non-negative’ c- HI 2(S?) vanishing on Bres.

These definitions are such that u, y is a solution if and only if it is a

super- and a subsolution.

~, 3.2 COMPARISON LEMMA FROM ABOVE. Suppose u, V is a solution, and
v, is a supersolution positive in a neighborhood of Sres with the addi-
tional property that Q n a{v &#x3E; 0} consists of Lipschitz graphs in vertical di-
rection locally in Q and a set E c aS~ with

Then u c v on connected components of Q r1 Iv &#x3E; 01 touching and y = 0

above these components.

PROOF. For e &#x3E; 0 consider the cut-off function



581

and for 6 &#x3E; 0 define

and for &#x3E; 0 let

Then -1 ) - v) is an admissible test function for u, y
in (1.2), hence

and v) is an admissible test function for v in 3.1.1), hence

Adding these integrals we obtain

therefore

By assumption the last integral converges to zero for e - 0 independent of s
and 6. Clearly the first term tends to zero 0. Therefore we have to

show that the middle term becomes non-positive in the limit ê t 0 and 3 j 0,
which is an estimate near

Since locally Q n {v &#x3E; 0} is a subgraph in vertical direction, de increases
with height near Therefore for small s one part of the second integral
above is 

-
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and using 2.3 we have for the second part

Since Ie is a Lipschitz graph by assumption and fu &#x3E; 01 a subgraph
in vertical direction (see 4.1 ), and since d,~ = 0 below this can be esti-

mated by

which tends to zero as ê t 0 and 3 § 0.
We thus proved that

From this the lemma follows easily. Let D be a connected component of
S~ r1 {v &#x3E; 0} containing a given point xo E as boundary point. Then v

is positive in B,(x,) for some r &#x3E; 0. If we replace v in S~ n Br(xo) by
the harmonic function with same boundary values, we get a new super-
solution, hence we can apply the above estimate for the new v in the fol-
lowing way. If

have and

The first term vanishes, since v is harmonic in Q n Br(xo) and = 0

in (u =0}. The second term is

This shows that the function w E with w = 0 in is

harmonic in Br(xo), therefore zero in Br(xo). By continuation the same argu-
ment implies w = 0 in D. Since then u = 0 and therefore ahy = 0 above
S~ n one estimate above shows that for compact curves 27 = graph g c
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This completes the proof of the lemma.

3.3 REMARK. In the definition of supersolution no overflow condition
appears, and the comparison lemma says, that the solution is the minimal
supersolution. This result was already obtained in [1] by construction.
Here u is called minimal if for every supersolution v we bave in Q’

except in certain ground water lakes (see [1], 4. and the uniqueness theo-.
rem 9.3 in this paper).

The following comparison Lemma is not sharp, but easier to prove.

3.4 LEMMA. Suppose u, y is a solution, and v, is a subsolution with,
{v &#x3E;0}. Then u&#x3E;v in every connected component

of Q (*) {u &#x3E; 0} touching a segment of Sres.

PROOF (see [3], Satz 3.3). We have

that is,

The first term is non-positive, since v is a subsolution, and the second integral
is non-negative, since by assumption

that is,

4. - The free boundary in the interior.

If u, y is a solution for inhomogeneous media with permeability a, then-

®y (aue) 0, provided W (ace) 0 ([3], Satz 4.4), which immediately gives 4.1
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in our case. Moreover this condition on the permeability implies y = 
which was proved in [3], 4.1-4.4. Here we will detail the proof for two dimen-
sional homogeneous media. Knowing this, one can apply the regularity
results in [2], that is, the free boundary in the interior consists of analytic
curves.

4.1 REMARK. If X [ho, h,] c S~, then u(yo, hi) &#x3E; 0 impliesu(yo, ho) &#x3E; 0.

4.2 LEMMA. If - then 1

uniformly for 

PROOF. Define 7~:= X [ho, h,] and

-Choose a sequence (yr, hr) -~7~ with r = such that

We can assume that y, &#x3E; yo . Since u is locally Lipschitz continuous (2.3)
l is finite, and for a subsequence the blow-up sequence u, with respect to
the balls converges to a limit u*, which satisfies

By the strong maximum principle this implies

Since u*, y* is a solution we obtain I = 0 by the following argument. For

non-negative functions ~ E 0~(R2) and d,,(y, h) := max (min (1 + 1), 0)
we have
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The first term tends to zero for 6 0, and since u* = 0 on {y = 0} the
second equals 

- -

where the first integral is of order b2 by the Lipschitz continuity of u * and
the second integral is non-negative. This proves 

4.3 SEPARATION LEMMA. If X ]ho, h1[ c Q n {~ = 0~, then there is no
through this line, that is, from both sides this line can be considered as

impervious boundary.

PROOF. Let i e with support in a small neighborhood of a point
on this line, and define

Then similar as in the previous proof we have for 3 § 0

which tends to zero by 4.2.

Using 4.2 and 4.3 we can prove that y is a characteristic function.

4.4 THEOREM, SUPPOSE X [ho, hl[ c Q n {2 = 0} with (yo, hl) E
E such that in a neighborhood of this point aS2 is a Lipschitz graph
in vertical direction. Then y = 0 in a nezghborhood o f X ]ho, hl[.

PROOF. Let hl. If u would be positive near (yo, h2) on one
side of the line {y = Hopf’s principle would contradict 4.2. Therefore

we find values y-  y+ near yo with h2) = 0.
Then u = 0 above these points by 4.1, and 4.3 implies that u, y is a solu-

tion in

with boundary sets
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Since u ~ C3 y+ - y_, we can apply the comparison lemma 3.2~
to the supersolution

and we obtain

Then also y = 0 in this region, which follows immediately if we take

~(y, h) = min ( C3 - (h - h2), 0) as test function for the solution u, y in D.

4.5 COROLLARY Let xo= (yo, 8(u &#x3E; 01 and x, = (yo, hl) the first
point on 8Q above xo . If Xl satisfies the conditions in 4.4, then Q r1 &#x3E; 0}
is an analytic, graph in vertical direction near Xo and 7, = 0 above this 

PROOF. If we apply 4.4 to all points of ~~ r1 0} near xo we get that
Y = in a neighborhood of xo and above this neighborhood. Moreover
y = 0 in a neighborhood of xi . For this situation the regularity of the free
boundary near zo was proved in [2].

Example 6.5 shows that we need global assumptions to be sure that
every free boundary point is regular.

4.6 THEOREM. If consists o f a finite number of points, and if uo &#x3E; 0

on then y = and locally Q r1 &#x3E; 0) is an anal ytic graph in
vertical direction.

PROOF. Let x, = (yo, ho) be a point a little bit above a given free bound-
ary point. As in the proof of 4.4 we find a sequence y , yo with ho) = 0.
Let (yk, hk) be the first point in 8Q above (yk, ho), and choose a subsequence
such that (y,, hk) - x. Denote the polygon with corners (y,, hk), (y~;, ho)r

ho), and by rk and let Dk be the connected component of
containing the lower part of the small strip enclosed by Fk. By the

above choice of the subsequence and since 3D is Lipschitz we infer that for

large k the set D~ is bounded by T, and a curve Ik c 3Dy and that 
and (y+i , hk+l) are the only common points of Ek and Fk. Moreover for large k
and k &#x3E; k -E- 1 the intersection Ik r1 Ik is empty. Since aSres is finite w e have
two possibilities:

1. ca,se : 1:k C Sres for some k. Then u &#x3E; 0 on Ek and 4.1 yields u &#x3E; 0

in D&#x26;y which together with the Hopf principle contradicts 4.2.
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2. case : for all large k. Then we conclude as in 4.4 that

-u(y, h) = 0 for (y, h) E S2, with and also y = 0 in this

region. Since this is true for all large k, and since the same argument holds
from the left side, we proved that y = 0 in a neighborhood of X ]h., ~o -~- 81
for some E &#x3E; 0. Then the assertion follows as in 4.5.

The following statement is similar to 4.4 and can be interpreted as a
nondegeneracy property. The proof also applies to higher dimensions.

4.7 LEMMA. Let Q = ]-1, 1[X ]0, oa[ and suppose that Q r~ Q is contained
in Q n empty, and Q rl Sair n BifiD is finite. Moreover, as-

that Q n . is a Lipschitz graph in vertical direction. Then for 0  no  hl
there is a constant c = &#x3E; 0, such that S~ n aQ
implies y = 0 in ac neighborhood of (0, 

PROOF. Define D : = Q n Ih  g(y)}, where g : [-1, 1] - ]0, oo[ is a

smooth function with ~(± 1 ) = 2h1, g(± 1) = 0, and g(o )  ho . Consider

the harmonic function v in D with boundary values v = 0 on graph g and
-~(y, h) = 2h, - ~ for (y, h) E 8D%graph g. There is an 8 &#x3E; 0, such that ev
is a local supersolution in S~ r1 Q. Since &#x3E; 0 on S~ r1 aQ, the assertion
follows from lemma 3.2 applied to the domain Q r1 S~ and the boundary
sets Q n Q, 1 Sair = Sair, 191MD = SIMD In order to verify the condi-
tions in the comparison lemma choose 9 such that E : = aS2 n graph g con-
sists of a finite number of points belonging to or At such points
Vu satisfies a Morrey condition

for some a &#x3E; 0.

.5. - The free b©undary near reservoirs.

consider the free boundary near a point on the fixed boundary, which
lies on the surface of a reservoir.

5.1 AsUmos. u, V is a local solution in Q r’1 BR for some .R &#x3E; 0 and

1) . r1 .BR is a curve with curvature less then "0’ contains the

has tangent exp Cido] at the origin, where 0  cr,,  :rt.

2) 8Q rl BR r’1 {h  0~ is contained in with Dirichlet data
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is contained in Sair with Dirichlet data

5.2 REMARKS 1) Since we are interested in local properties of the free
boundary, we can choose 1~ such that

with a OJ,1 function Y satisfying

2) We should remark, that in general the assumptions in 5.] give no
information about the behavior of the free boundary at the origin. For

example, if ao &#x3E; n/2 and 0  0’  0’0 then is a local solution in

fy &#x3E; (cot where ua is the linear function in 5.5 and

Therefore in the case we need the additional assumption, that
y = in a neighborhood of some point above the origin. But then

(see 4.6) we can choose .R small enough, such that this is fulfilled r1 

3) The special data in 5.1.2) are not essential for our techniques, but
since they are the standard ones for the dam problem, for simplicity we re-
strict ourselves to this case.

Our procedure is as follows. In the case thatu is positive in a neighbor-
hood of the origin, we have overflow in this neighborhood. Otherwise the

origin is a limit point of the free boundary, and we show (5.3) that this is,

equivalent to the Lipshitz continuity of u near the origin. Therefore we are

allowed to consider blow-up functions, which are studied in 5.6. Using
these results we can go back to the original function u and obtain the desired
result (5.7).

5.3 OVERFLOW LEMMA. I f u is as in 5.1 with the properties in 5.2.1),
then i for with a.

universal constant C.
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PROOF. If u is positive in a neighborhood of the origin, then

for z -~ 0, that is not Lipschitz continuous. Otherwise 0 is a limit

point of the free boundary. Then for x E Q n with u(x) &#x3E; 0 let 

be the maximum ball not intersecting 8(u &#x3E; 0}. Since B,.(x) does not
contain the origin, we have to distinguish between the following three cases::

1. case : e Q. Then u is harmonic in this ball and we get from

2.4.1) (applied to S~ n 

2. case : x E Br/4(Xl) for some Xl E Bres. Then u is harmonic in Q r1 
and aD r1 c The first estimate in 2.4.2) (again applied to.

S~ n B.5,(X)) implies

and from the second inequality we obtain

Therefore the harmonic function w(x) : = u(x) + in S2 ~1 Br/2(X¡)i
satisfies

and by well known estimates we obtain

3. for some x, E Sair. As in the 2. case we conclude-

(now the Dirichlet data on 8Q n Br/2(Xl) are zero)

5.4 REMARK. The length of overflow can be estimated from below in.
the following sense. There is a universal constant C, such that the inequality
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~~(~) ~ Clxl for some x c- Q r1 B RI4 implies u &#x3E; 0 in Q r1 * This follows
from 2.4.2).

In the case of a linear fixed boundary there is a class of linear super-
and subsolutions, which give us the essential information about the behavior
.of the free boundary.

5.5 LINEAR SOLUTIONS. For define

jf positive, and ua(x) = 0 otherwise.

Fig.5

Fig. 5 shows the regions of the parameters (10 and or for which ua is a

super-and subsolution in the half space

that is,
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Therefore uu is a solution, if and only if a = 0 (horizontal free boundary)
or l1 = (/0 - nj2 (right angle). uO is the solution at rest.

Therefore it is natural to define

and to state the following theorem, which we will prove using the comparison
lemmas 3.2 and 3.4.

5.6 THFOREM. Assume aS~ is linear near the origin and u, y is a local
solutions as in 5.1. Then the following statements hold.

1) I f exp is any tangent vector of the free boundary at 0, 

2) If with y = ( relevant only for (10"&#x3E;7&#x26;/2), then either

u = or the free boundary has the tangent exp [i~_] at 0 and is the unique
blow-up function.

3) I f u ~ u~+, then either u = uG+ or we have overflow, that is, u &#x3E; 0 in

a neighborhood of 0.

PROOF OF 3). For define

Let us assume that there is no overflow. Then 5.3 says that u is Lipschitz
continuous in hence by 2.5 we can choose a sequence r ~0 such that

converges to a blow-up limit u*, y*. and a*  do, and

since h ) = 0 for we have 

Now assume that u *(xo) &#x3E; 0 for some xo E S~ n a{u’- &#x3E; 0}. Then by the
strong maximum principle u* &#x3E; u°~* in {u’- &#x3E;0}y and since u, - u*
uniformly we must have

for some 8 &#x3E; 0 and small r. Moreover for the point x1 E where

ro = we have by the Hopf principle (v normal of aS2)
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and since ~r -~ ~ * in C 
I near zi, we also must have

for some c &#x3E; 0 and small r. On the arc 1:e of joining BE(xo) and 
we have ~c* &#x3E; therefore also

for some El and small r. Altogether we see that

for some E and small r. Since u’* " is a subsolution, we obtain from the
comparison lemma 3.4 applied to the domain D - D n Bro and the boundary
sets Sres U (f2 () and Sair = Sair

that is, ~(r) ~ Q* -~ ~, a contradiction to the definition of ~* .
Therefore we must have

and we will that this implies

In the case ~* C ~c/~ we conclude (see 4.1) u * = 0 in ~~°‘* = 0~ r1 
and = 0 in this region. Therefore on &#x3E; 01 (y * is defined from

above)

(By 4.2 the case ~,~ _  Qo cannot occur.) This proves, that on the

&#x3E; 01

The right side is non-positive, since o’~&#x3E;o+ by our assumption in the state-
ment of the theorem, and the left side is non-negative since ~c* ~ u~*. There-
fore a*= ~+ and o-v(u*-u(1*) = 0 on the above line. Since the Cauchy
problem has a unique solution, we conclude u* = u~+.
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If we now apply the same arguments to u and 1+ instead of ~c * and ~*
we obtain u = u’+. ,,

PROOF OF 1). Define 1* as before, where d*(r) := if the set
in the definition is empty. We will argue as in the proof of 3), and thore-

Su ’

fore let u*, y* be a blow-up limit, which exists by 5.3, since there is nothing
to prove in the overflow case. 

i ’°

First we see that the Lipschitz continuity immediately implies 1* &#x3E; ~o -a~.

Then we can apply the arguments in the proof of 3) and obtain

on the line &#x3E; 0}, which implies 

PROOF oF 2). Define

Since we have no overfiow, and therefore by 5.3 we can choose a
blow-up sequence ur, yr converging to u*, y*.

Then (we proved and ~_ c 6* c ~+. If ~* _ ~_,
the free boundary has the desired tangent. Therefore let 6* &#x3E; 0’- (hence

· We will prove u =,a’+ as in the proof of 3), but now we argue
from above.

Assume there is a free boundary pointzo e &#x3E; 0} r1 ~u~- - 0) of u * .
Then for a subsequence r j 0 there are free boundary points xr = ( yr, hr)
of Ur converging to xo, since otherwise ~c* would be harmonic in a neigh-
borhood of xo . Then h) = 0 for h ~ hr and similar as in the proof of 3)
we conclude that for some E &#x3E; 0 and small r in the above subsequence

where

(In the case Go &#x3E; n/2 cut Qr in the region where by assumption yr = 0.)
Now we apply the comparison lemma from above (3.2) to the domain

S~r = Q m Qr and the boundary sets Sres = Sres U n &#x3E; 0~ ) and
Sair = ’Sair or Sair U &#x3E; 0~ ) . This can be done, since the sepa-
ration lemma (4.3) and the fact that yr = 0 near the top of Qr in the case
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~o &#x3E; zc/2 ensure that ur is a solution with respect to the data defined above.
We obtain in £5, a contradiction to the definition of c~*.

Therefore ~c* is harmonic in &#x3E; 0} and zero on a{u’* &#x3E; 0}, which
and ah y * = 0 in ~ua* - 0~ . But since Yr = = 0 in

= 0} near 0 by the assumption u  and 4.5 we see that y * = X(u. &#x3E;O}
and therefore

on the line &#x3E; 01, which as in the proof of 3) yields

If we apply the same argument to u and 0’+ instead of u* and 0’*, we obtain
u = 

5.7 THEOREM. Let u, y be a local solution as in 5.1, such that 0 is a limit
point of the free boundary, and in the case assume that y = 0 in a

neighborhood of some point above 0. Define

Then the following is true.

2 ) If a-  -r  cr+, a- and the free boundary has the tangent
exp [i~_] at 0.

3) If t ~ ~+, the 7: = a~+ and the free boundary has the tangent exp 
at 0.

PROOF OF 1). We proceed as in the proof of 5.6.1), but since 8Q is not
a straight li.ne we have to change the definition of the functions u(1. For

small r &#x3E; 0 let ur E ]0, n[ be the maximum value for which

and define u’l1 as ul1 in 5.5, but with (To replaced by (Jr. Then u" are subsolu-
tions for and (Jr t (Jo as r ~ 0. Using ura in
SZ r1 Br instead of u~ in the proof of 5.6.1) we obtain the assertion. (For 1)
the assumption on y is not needed.).
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PROOF OF 3). Since 0 is a limit point of the free boundary, u is Lipschitz
continuous (5.3), and blow-up limits u*, y* exist. We will show, that every
blow-up limit equals ~a*. For s &#x3E; 0 consider the domain

By assnmption u is harmonic in B, r1 De for small r. Since D~ has an angle
less than n at 0 we conclude ,

which implies u*&#x3E; u°+. Since ê was arbitrary we and 5.6.3)
gives u* = 11/1+.

This shows that

If not, there would be an e &#x3E; 0 and a sequence r t 0 such that u &#x3E; 0 in

[~o~+]), hence the corresponding blow-up would be harmonic in
B,(exp [ZC~+]), a contradiction. Therefore we find a sequence of free boundary
points (y~, hk) -+ 0 with .

and since u is Lipschitz continuous we have

where

Here (y, g(y)) is the first point on 8Q above (y, 0) or a point in the neighbor-
hood, in which by assumption y = 0. For given E &#x3E; 0 consider the function

Then on for large k and using the separation lemma 4.3 we can

apply the comparison lemma 3.2 to 15~ with boundary sets BreB _ (Vz &#x3E; 0)
and 8m = &#x3E; 0}. We obtain that the free boundary of u is contained
in {v, &#x3E; 0} near the origin, which proves 3), since E was arbitrary.
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I.. PROOF OF 2). First let us assume that the corresponding lim sup in the
statement of 5.7 does not exceed 0"+, which will be proved at the end. Then
similar as in the proof of 1) let a, E ]0, ~c[ be the minimal value for which

and define ie’ as u’ in 5.5 with Oo replaced by Then u" are supersolutions
at 0 for min 0)  max yr/2y 0 ), o’o as r t 0. Since

r  ., we find for some ~ &#x3E; 0 a sequence of points x,, = r exp [i(a+ - E)]  0
with U(Xr) = 0 . If u * denotes a blow-up limit with respect to this se-

quence, we have u*(exp [i(cr+- ~)]) = 0, and because of our additional as-
sumption on the free boundary we know

Thi~. shows ~c* ~ ua+ and ~* ~ u~+. Then 5.6.2) shows that is the unique
blow-up limit of n * at 0, that is,

for ’given (1 &#x3E; (1- and small s. Then comparing u with the supersolutions uar
we obtain the result as in the proof of 5.6.2).

To complete the proof let 8 &#x3E; 0 be small and v, as above, and choose
r small enough such that VB(Y, h)  - h on Bres r1 Br. Assume that the cor-

responding lim sup in the statement of the theorem is larger than (1+ -~- E.
Then since 7: : (1+ the set

contains infinite many connected components converging to zero, such that
~ is positive somewhere between them. Moreover we can choose a monotone
sequence 1, of them containing points xk = (Yk, hk) with

Let us consider the function ~7:==~2013~ and let D~ be the connected

component of 
- - - -

containing Ik as a part of the boundary.
’ ~ If two of these components are equal, say Dkl = we can choose

a simple curve r in this component joining xkl and Xka. Denote by Q the
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domain bounded by 1-’ and the vertical rays starting from 1 and x,, . (in
the case ao &#x3E; (we have nf2) only up to the neighborhood, where
y = 0 by assumption). Then on r1 Q) and we can apply the com-
parison lemma 3.2 to the domain 15 r1 Q with boundary sets Sres _

and Sair U &#x3E; 0 ). We obtain c v in 15
a contradiction to the construction of the segments Ik . Now pick a maxi-
mum Zk of the continuous function w in Then &#x3E; 0, 1
and since on B n aDk and d2v = 0 in &#x3E; 0} we have two
possibilities, Zk E Dk n &#x3E; 0} and Zk E aBr r1 Qk.

In the first case (see [8], Lemma 3.2) we have by the Hopf principle
at this point (by 4.5 the free boundary is smooth)

Since w = wg &#x3E; 01 the point Zk is a maximum for we on &#x3E; 01,
that is, I v = v,, where vg is the normal of &#x3E; 01. But (VVe + e ) ~ vs = 0,
a contradiction. Therefore Zk E oBr n Dk. Since there was no connection

between the components Dk, we find points z’ E aBr n between z,

and z,+,, hence w(zl) = 0. Choose a subsequence such that zk - zl. Since

by construction w  0 at the point of aBr n Bres we conclude Zl E Q r1 ~v~ &#x3E; 0) ,
and since w(zl) = 0 we must have u(zl) &#x3E; 0. Therefore w is harmonic in

a neighborhood of zl, hence &#x3E; 0} has a finite number of components near zl.
Since aD,E converge to zl, this cannot be.

6. - The free boundary near the atmosphere.

In this section we study the local behavior of the free boundary near

boundary points to the air. We show that the free boundary is vertical or

tangential.

6.1 ASSUMTTION. u, y is a local solution in Q r1 BR for some R &#x3E; 0 and

1 ) ~.~ r1 BR is a Cl,l curve, contains the origin, and has normal vo =
.- exp -~- nj2)] at the origin, where 

2) aS~ n BR is contained in B air.

3) The origin is a limit point of the free boundary.

4) If we assume that y = 0 in a neighborhood of some point
in Q r1 BR above the origin.
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6.2 REMARK. We can choose .R small enough, such that ,~ is a

small deformation of a half ball, and such that (using 4.6) y = in

If we can assume that y = 0 in a neighborhood of

fo} x ]0, 

6.3 LEMMA. with a universal constant C.

PROOF. As in 5.3 (1. and 3. case).

In the case 0  0’0  the free boundary is always tangential to the
fixed boundary. This was proved in [8], Theorem 2.1, and is also a special
case of 8.4.

6.4 THEOREM. For 0«To yr/2 the free boundary ig tangential at 0.

6.5 REMARK. For the additional assumption 6.1.4) is necessary
in order to get the local results. As counterexample consider the domain

with boundary sets
and Dirichlet data

r, be a solution constructed in [3]. As in [3], Beispiel 4.6 we com-
with linear functions

with

The comparison lemma 3.2 implies

Moreover, using an appropriate continuation of ~° as test function v in 1.2
we see that for E  1 /2
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A sequence of such functions gives a local solution for which 6.1.4) is not.
satisfied (see fig. 6).

Fig.6

6.6 THEOREM. I f then the free boundary is vertical at ©..

PROOF. Let R as in 6.2 and 8Q = graph go near 0 with = 0 and

g§(0) = tan ao. Then y = 0 in a neighborhood of {0} x]0y R[. Moreover,
if we allow Go to be any value between ;r/-9, and 3c/2, we can assume that.
u = 0 in {~0).

First we see that u &#x3E; 0 in D near (y, go(y) ) for small y &#x3E; 0. Otherwise u-

is a non-negative subharmonic function in

vanishing on its boundary for some yo &#x3E; 0. We conclude u = 0 in this.

domain, that is, 0 cannot be a limit point for the free boundary y a contra-
diction to 6.1.3). This shows that in a small neighborhood

where g is a continuous function with g(y) &#x3E; go(y) for y &#x3E; 0 and = 0.

Another consequence of the subharmonicity of u is that u can be estimated
by the harmonic function in Q n B.ft (’B {y &#x3E; 0} with boundary 
hence

and on

Now let 0 C ~ ~ r small and define . Using the
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fact that y = 0 near the top of D~ ~ we can take

as test function in 2.1. Letting 6  0 we obtain for almost all 8 and r

Since = 0 and since n is Lipschitz continuous we deduce for e t 0

It was shown above that Vu(y, go(y) ) - 0 for Y t 0. Thus we obtain

Since Vu is bounded, this implies in particular

If the statement of the theorem is not true, there is a sequence rk t 0 with

hence for 6 &#x3E; 0 and large k

If 3 is small enough, this implies that there are points xk = (rk, rksk) with
0 C sk - ð - tan (10  land
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But u is harmonic in for large k. Hence Poisson’s formula yields

for k - 0, since u decays faster than linearly. This is a contradiction.

The last case is

6.7 THEOREM. For or,= the free boundary is vertical at 0, and

-~y &#x3E; 0~ is the tangents cone of Q n ~u &#x3E; 01 at 0.

PROOF. First we prove that for some’large a &#x3E; 0

For this assume u(yo , = 0 and choose ho such that (yo, ha) lies in the
neighborhood where y = 0 by 6.1.4). Consider the domain

Then at the bottom of lli by 6.3, and therefore

Using the separation lemma 4.3 we can apply the comparison lemma 3.2
to D with boundary sets and Sair = x

and we obtain u(y, h) = 0 for with h ~ { C - c~) yo, which is a
Jcontradiction to 6.1.3) if au &#x3E; C.

Now assume that the theorem is not true. Then

where g is defined as in the proof of 6.6. Furthermore = o(x) for r - 0

by [8], Proposition 2.1. Since u is harmonic in B,,,((y, - 2ay)) for small

y &#x3E; 0 and some c &#x3E; 0, we conclude using Poisson’s formula

’Then we get a contradiction as in the proof of 6.6.
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7. - The free boundary near the impervious boundary.

In this section we will show, that at points of the impervious part of the
fixed boundary the free boundary is horizontal or tangential.

’l.1 ASSUMPTIONS. u, y is a local solution in Q n BR for some R&#x3E; 0 and

1 ) a,~ f1 BR is a 01,1 1 curve, contains the origin, and has normal ra =
= exp + nj2 )] at the origin (O1on).

2) f1 BR is contained in StmD. *

3) The origin is a limit point of the free boundary.

4) I f we assume that V = 0 in a neighborhood of some-

point in Q n BR above the origin.

7.2 REMARK. We can choose B small enough as in 6.2.

First let us prove the Lipschitz continuity of u.

7.3 LEMMA. If u is as in 7.1, thon

with a universal constante C.

PROOF. We can assume that u has the properties in 7.2. Q n 

with u(x) &#x3E; 0 let be the maximum ball not intersecting S~ r1 &#x3E; 0}.
If B,I,(x) c Q we get the estimate as in 5.3. Otherwise x E for some

Then 2.4.3) (applied to S2 n B5r(x)) says

Therefore the harmonic function :_ -~- (~2013~i)’~ in
satisfies

and by well known estimates we obtain  C.

If the free boundary is not tangential to the fixed boundary at 0, we will
show that it becomes horizontal, which in terms of u means
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The main difference to the situation in sections 5 and 6 is that here at the

point of interest the velocity vector becomes zero. Our proof is based on
the following observation.

7.4 REMARK. Formally Vu satisfies

Here we are interested only in the first two equalities, which say that in
the case of a linear fixed boundary Vu maps the set n ~~c &#x3E; 0}) r1 BR
into the boundary of the set

(see Fig. 7).

Fig.7

Moreover Vu is bounded by 7.3. Therefore it is natural to prove that the
values tend to !1 for r - 0. This implies that for blow up limits ~u*
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maps into B¡(- e/2), which forces the free boundary of u* to be concave to
the fluid (7.7). Knowing this we can prove the statements in 7.8-7.12.

7.5 LEMMA. If u is as in 7.1, then dist A)- 0 as z- 0.

PROOF. If not, there is a sequence x, - 0 in ,S r1 {u &#x3E; 01 with

VU(Xk) E for some 8 &#x3E; 0. We can choose xk such that + e/2 ) t
converges to the limit superior 1 of all such values, which is finite since u
is Lipschitz continuous. Let be the maximum ball contained in

{u &#x3E; 0} touching the boundary of this set at zk E Then for a

subsequence the blow-up functions with respect to I that is,

converge locally uniformly to a function u*, and

Then is harmonic in B1(- v*) and Vu* uniformly in .B~(- v*),.
hence v*) --E- e/2 ( = Z and Vu*(- v*) E If const in

B1(- v*), then Vu* is an open mapping, which contradicts the definition
of 1, since each neighborhood of Vu*(- v*) contains points outside Be(A) V

Therefore u * must be linear in the connected component D
of the set where u* is harmonic containing Bi(- v*). Since ~~(0) == 0 we
conclude

Now the domains Qi, = Zk) converge to f2,, which is either the
entire plane or a half plane with normal vo . Hence we have the following
three cases.

1. case. Be c Q* for some e &#x3E; 0. Then the points Zk were free boundary
points and the blow-up sequence converges to a local solution (see 2.5).
Therefore (see 4.1) v* ~ e &#x3E; 0 and °hY* == 0 in Then the

free boundary condition

implies

a contradiction.
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2. case. ~* _ ~x ~ v*  0~ and Then ~c* is harmonic in

J5 r~ Q* for some e &#x3E; 0, therefore

that is, again a contradiction.

3. case. [2* = ~x ~ v*  0} and u(z,) = o(rh). Then the blow-up limit,

~c * , y * is a local weak solution by 2. ~. If u* has a free boundary in Be r1 Q*=
we argue as in the first case, otherwise we argue as in the second case.

7.6 LEMMA. Let ur, Yr be a blow-up sequence at the origin converging to
u*, y*. Then

1 ) .S~ * r1 &#x3E; 0~ consists of analytic curves and y* = 0 above these °

curves.

2) If (yl, hl), (y2, h2) E Q* r1 = O}, then for given c &#x3E; 0 and large r-
we have

with a universaZ constant C.

PROOF. For 0 or,, the first statement follows from 4.6. Therefore

let and choose xo E (YO ho) E 8(u* &#x3E; 0}. By 4.2 either u * = 0
in a left neighborhood of xo or there are free boundary points hi) with
yl  yo near xo. Each free boundary point of u* is a limit of free boundary-
points of the blow-up sequence ur, since otherwise u * would be harmonic
near that point. Therefore we find points (y,,, h2) and (yor, h2) in ~2~r = 01
with and Consider the domain

where (ry, g(ry)) is the first point on ~~~ or a point in the neighbourhood
in 7.1.4). As in the proof of 4.4 we can apply the comparison lemma 3.2
to the function

in where C is the Lipschitz constant of u. Hence y, = 0 in,



606

which in particular proves 2). Letting r -* 0 we obtain

’Since the same is true from the right side, 1) follows as in 4.5.

7.7 LEMMA. If u *, y * is any blow-up limit at the origin, then I Vu + e/2 
in ~u * &#x3E; 0} and 8(u* &#x3E; 0} consists of analytic curves, which are
concave to the fluid.

PROOF. For x E S~* r1 ~u* &#x3E; 0} we have -~ and therefore

Vu*(x) E .~l by 7.5.
If we assume that lies on a ray in e/2), then Vu* must

be constant in the connected component D of {u* &#x3E; 0} containing x, since
Kotherwise Vu* is an open mapping and its image would contain values
. outside A. Therefore D must be the intersection of Sz* and a half plane,
and since Vu* maps the free boundary into aB,(- e/2) by 7.6.1 ) and 7.4,
we conclude D = S~*. But since u*(0) = 0 this implies u* = 0 on aS2*
hence for some a &#x3E; 0 and (Vu * + 6)’yo= 0. Therefore Vu*
must lie on aBi(- e/2), which is a contradiction.

We thus proved, that V* maps D~r~{~~&#x3E;0} into B.(- e/2), and
the free boundary into ôBt(- e/2 ). Now it is easy to see, that the differential
equation and the free boundary conditions for u* (use 7.6.1)) imply, that
.on the free boundary

where r is a unit tangent and x the curvature of the free boundary in v
direction. Hence

The following arguments differ in some details for different values of Co.
’Therefore let us divide the result of this section into five theorems.

7.8 THEOREM. If  n, then the free boundary is horizontal at 0,
,and in a small neighborhood there is no fluid on the side.

PROOF. We divide the proof into several steps.

1. step : First let us prove the last statement. We have h) = 0 for
.h&#x3E;0 and y = 0 in a neighborhood of some point (0, ho). For small r &#x3E; 0
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we take an approximation of the characteristic function of ]- r, 0 [ X ]- oo~ hzA[
as test function for u, y in 2.1. Using the separation lemma 4.3 we obtain
for almost all r, if 8Q = graph go,

Integrating over r we get

hence the assertion.

2. Define for y &#x3E; 0

and

We will show that I- = 0. To prove this choose a sequence Yk t 0 with
g(Yk)!Yk --~- l- and denote by u * a blow-up limit with respect to r,,: =
: = If Z_ - we compare the solution u in the region

with the trivial solution

Since u is Lipschitz continuous we see that h) for all hand
large k. Hence the comparison lemma 3.2 yields u w in 9), in particular
~ = 0 in a neighborhood of 0, a contradiction to 7.1.3). Therefore l- &#x3E; tan o’o
and ~,~ must be harmonic in

Then the boundary condition a_~,~c* = e ~ v ~ 0 on aS2* implies that u* is
positive in this cone. Since u* cannot be positive in a right neighborhood of
0 by 4.2, we conclude that 0 is a limit point for the free boundary of u*,
hence 1-  oo. Then 7.6 implies that the free boundary of u * is the graph
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of a continuous function g* with

Since the free boundary of u* is concave to the fluid by 7.7, we conclude
g*(y) = l_y for 0  y  y*. Since u* = 0 and 8_ ~ u* = y * on this segment
we obtain by the uniqueness of the Cauchy problem that u* is the positive
part of a linear function. Then the flux condition (~u* --~ e) ~ v = 0 on 
yields 1- = 0.

3. step : Now we will show that also

equals zero. Again choose a sequence Yk t 0 with g(Yk)/Yk - l+, and let u *
be the blow-up limit of Urk with tk : = As in the 2. step we
see that near 0 the free boundary of u* is the graph of a continuous func-
tion g* w-ith .

Morcover, as in the proof of 7.6.2) we get that for large k

This implies Therefore the free boundary points g(y~) ~
of Urk converge to a point (y*, 1+y*) ~y &#x3E; 0}, which by 7.6 is a

free boundary point for u*, in other words, g*(y) = I+y*. Since the free

boundary is concave to the fluid by 7.7, we conclude g*(y) = 1+y for y &#x3E; 0,
and then 1+ = 0 as in the previous step.

7.9 THEOREM. If Oo== n, then the free boundary is horizontal at 0.

PROOF. Define g, l-, Z+ as in the proof of 7.8. If we assume 1- &#x3E; 0, then
the arguments in the second step of the proof of 7.8 lead to a contradiction.
Therefore ?_=0. Now suppose that
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Then as in the proof of 5.7.3) use the functions Ve (here with a+= 
comparison functions for u and conclude l+ == 0. l’ ,

To complete the proof assume that there is a sequence hk) E 8Q with
and u(y,, Let u* be a blow-up limit at the origin with

respect to and there is a maximum
value s E [0, 1[ with u*(s, 0) = 0. Then (s, 0) is a limit point of the free
boundary of ~c * from the right (otherwise Hopf’s principle would contra-
dict 4.2). 7.6 then implies that y* = 0 in a neighborhood of some point
(s, ho). But the first step of the proof of 7.8 (applied to u* with 
says that this situation is impossible. 

Now We deal with the upper impervious boundary. First let us character-
ize blow-up limits. 

’ ~’

7.10 LEMMA. I f then

1) for small r &#x3E; 0. - : : s I ’

2) If u* is any blow-up limit at 0, or (forGo&#x3E; 0)

with a convex function g* satisfying g*(O) = 0 acnd g*(o) = 0. .."

PROOF. Assume that u(O, -rk) = o(rk) for a sequence rk t 0, and let u*
be a corresponding blow-up limit. Then h) = 0 for -1 ~ h c 0. Hence
u* = 0 in a neighborhood of 0 by 4.4, and since uniformly, 4.7
shows, that urx = 0 in a neighborhood of 0 for large k, a contradiction
to 7.1.3). Thus 1) is proved. For blow-up limits ~* at 0 we distinguish bbL
tween two cases. ’ 1:.

. i. a

1. case: u* is harmonic in for some E. Then the holomorphie,
function f := exp [- + i) defined in Q* r1 BE has real values on

(see 7.4), therefore has a holomorphic continuation in BE. Since

u*(0 ) = 0 and u* &#x3E; 0 in Q* n BE by 1), is perpendicular to exp 
that is, = sin 0’0. If f is constant, then ~c* is the desired linear func-
tion. If not, f has an expansion 

’ 

,

for some and some integer Now the property 1V’u,*+ 
which was proved in 7.7 says that on 8Q* m Bt. This 

that the exponent m must be even, hence m ~ 2. We conclude that for small s
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the jmage covers nearly a ball with center I

whereas by 7.7, a contradiction.

2. ca8e : The origin is a limit point of Q* n 8 (u* &#x3E; 0}. By 1 ) the blow-up
U* is positive in some cone -f- ch  0}, and therefore

with a lower semicontinuous function g* : R -~ R. In addition we know

from 7.7 that 9* is convex in the open set Z:= ~y : g*(y)  y tan 
Assume there is an interval ]Yl, yo[ c I with Now statement 1) ap-
plied to u* says that for some small c &#x3E; 0 near (yo, yo tan ao)

Therefore the convexity of g* implies that

is finite and larger than Moreover every blow-up of u *
at (Yo, 9*~~0) ~ satisfies

Then the uniqueness of the Cauchy problem at the free boundary line of u**
implies that Vu* * = (so, + 1 ), which contradicts the boundary con-
dition on since so &#x3E; tan Jo . We thus proved that I = ]0, oo[.
Then the properties of the second blow-up u * * of ~c * at 0 imply g’(O) = 0.

A corollary of 7.10.2) is

7.11 THEOREM If aro = 0, then the free boundary is horizontal at 0.

7.12 THEOREM. I f 0  (To  then the free boundary is tangential to

at 0, or it is horizontal and in a small neighborhood u &#x3E; 0 on the left side.

PROOF. Let fu &#x3E; 0} = fh  g(y)}. First assume that (y, g(y)) 0 8Q
for small y &#x3E; 0. Since I by 7.10.1) and 7.3 we obtain similar as
in the proof of 7.8 (step 2 -3 ) that for y ~, 0 if lim inf g( y ) /y  tan (10.
Thus every blow-up limit u* at 0 has the form u*(y, h) = max (- h, 0),
hence u &#x3E; 0 on the left side in a small neighborhood of 0.
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Now consider the case that (y~, aS2 for a sequence
We have to show that this imphes

If not, we can choose 0  a  Go, a subsequence of and a sequence with

Consider a blow-up limit ~c * at 0 with respect to rk such that - s

with 0 ~ s ~ ~ . Since u * &#x3E; 0 in by 7.10.1 ) and the Lipschitz
continuity of ~~y there must be a free boundary point u* below ( 1, tan (1).
Then we obtain from 7.6 that (1, tan a) itself must be this boundary point
and that s C 1. This means, if we write 92* r) (u* &#x3E; 0) = {h  g*(y)},

Then 7.10.2) implies s = 0 and Q = 0, a contradiction.
It remains to show that the free boundary is tangential to the left, but

this is a consequence of 7.10.2).

8. - Points between atmosphere and impervious part.

8.1 AsSUMPTIONS. u, y is a local solution in Q n BR for some R &#x3E; 0 and

1 ) aS~ r1 BR consists of two 1 curves 1’~ and F2 starting at the origin
and with tangents exp and exp ~io~~] at the origin (0  oc: = ~2 - 0~1  2n).
The two unit normals of aSZ at the origin are v1:_ - i exp [ial] and

V2 := i exp 

2) Each curve and F2 belongs to or Sair.

3) The origin is a limit point of the free boundary.

4) y = 0 in a neighborhood of some point in Q r’1 BR above the origin.

8.2 REMARK. As in 6.2 let us choose R small enough.
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0 As in the previous sections the first step is to prove

8.3 is Lipschitz continuous near the origin, that is, lB7ul is

bounded in Q ~’1 B R/2 .

PROOF. By the proofs of 2.4, 5.3, and 7.3 we have to show that can

be estimated by Ixl near the origin. Therefore assume that there are points
Xk f1 (u &#x3E; 01 with --~ 0 and

Then it follows from the basic lemma 2.4 (replace there BR, for example, by
that the annular regions Q m contain no free boundary

points for large k. Moreover, we have

if r1 or r2 is contained in Sair’ 7 and

otherwise.

We will show that this implies that 8.1.3) cannot be satisfied. Hence for
,X,c- S~ r1 with u(x) &#x3E; 0 let us consider the maximum ball Br(x) contained
in S~ r1 ~~c &#x3E; 0~ . Then hence Br(x) cannot touch ,the free

boundary by lemma 2.2. Hence Br(x) reaches the fixed boundary aQ, and
this is true for all and large k. In the case the fixed

boundary satisfies an inner ball condition. We conclude that u &#x3E; 0 in Q n Brit:
for large k, a contradiction.

If oc  11:, we have to distinguish between several cases. If Ti and r2
‘belong to we consider the function

’where s is a fixed large number. Then u &#x3E; v on aBrx for large k, and for
x E 8Q m Brx and k --~ oo we have

which is negative for large if s is chosen large enough. Therefore v is a

subsolution in and since it follows from lemma 3.4 that

&#x3E; 0 in again a contradiction. Now let us consider the case
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that is contained in Sair and 1~2 in SimD . If yr/2  a C ~ we argue as fol-
lows. Choose continuations of 1~1 and F2 and denote by Dk the domain
enclosed by and containing r1 Brx . Let v be the harmonic function
in Dk with

Then for x c- S iMD r1 Dk and

which as above leads to a contradiction. Now assume a = xf2. If

we argue as before. If ~’~==0 we consider the function

were d1 and d2 are the functions

Then

for large if ~C &#x3E; C. Moreover

for large k if s &#x3E; 1, and on Dk we have for k -~ o0

which is negative for large k, provided M is chosen large enough. This means
that v is a subsolution, which is a contradiction.

Now let us consider the case a = with e ~ v2 &#x3E; 0. As above one verifies

that the function
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is superharmonic in Dk with (Vv + e) ~ v ~ 0 on for large k, provided
If &#x3E; C and s ~ 1, where the choice of k does not depend on s. In order to
apply the comparison lemma 3.2 we need that v &#x3E;u on But

since u  on this set the desired inequality holds for large k if we choose
We infer in a contradiction. In the case

oc  n/2 the above harmonic function v in D,~ satisfies

on Simp r’1 Dk for k --~ oo, therefore we can use this function as a supersolution.
Finally, if and F2 belong to Sair with «  n, a supersolution v with ==

= for x -70 exists. Thus the lemma is proved.

8.4 THEOREM. The tangent cone of the free boundary at the origin is either
a line or consists of rays in directions exp [ia) = ar, n, (12+ n, 0,
nf2, or n.

PROOF. We will proceed as in section 7, that is, we will study the values
of Vu(x) as x - 0. For this denote by ~l (see 7.4) the closed set consisting
of the curves aB,(- e/2 ) and

if h, belongs to Simp 7 and

if T; belongs to and of all bounded domains enclosed by these curves.
As in 7.5 one proves that the values Vu(x) approach ll as x - 0. Moreover
it follows as in 7.7 (first part of the proof) that the gradient of every blow-up
limit at the origin (that is, with respect to balls maps into T. Our

aim is to use the concavity arguments in section 7. For this we have to study
the exceptional case where e/2 ) is non-empty, which occurs only if,
say, h1 belongs to Sair and F2 to with via ’V2 =F 0 and Vl ~ v2 .

Then e/2 ) is a simple connected domain and there is a

point z* E D with (z* + e ) ~ v2 = 0 and z* _ - for some $ &#x3E; max ( e ~ vl , 0)
(see fig. 8 for the special case ii) below). If z* is not achieved by Vu(x) for
r - 0, we conclude as before (see 7.5) that
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and that (see proof of 7.7) the gradient of every blow-up limit,
maps into Bi(- e/2).

Fi g. 8

Therefore we have to consider the case where VU(Xk) --~ z* for a sequence
Xk E Sz r1 ~~a &#x3E; 0} converging to zero. Let be the largest ball contained
in t1 a{u &#x3E; 0~ ). We distinguish between two cases.

If &#x3E; 0, where (!k:= lxkll for a subsequence the blow-up functions,

converge to a weak solution ~c * , y * and -~ x * E S~ * . Since the func--

tions Uk are harmonic near x* satisfying the boundary conditions on the
fixed boundary they converge near x * to u* in hence = z* .
If Vu* would not be constant, z* would be an interior point of the image of
Vu* in the case that which contradicts the fact that Vu* maps
into A. If aS2*, we conclude that a small deformation of a half ball
neighborhood of z* is contained in the image of Vu*, again a contradiction
since 11 forms an acute angle at z*. We thus see that Vu* = z* in the con-
nected component of Q * n &#x3E; 0} containing the intersection of Q* with
a neighborhood of x* . This easily implies that -,a* is positive and linear inz
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the intersection of Q* with some half plane with u* = 0 on that is,
u*(rexp rial]) = 0 for r &#x3E; 0. Moreover, since Vu* maps the free boundary
into B!(- e/2), but Vu* = Z* 0 B!(- e/2), there is no free boundary, that is,
u * is linear and positive in Q *. Hence and since and 

we infer that 0  a  or zf2  a  x. Noticing that by 8.1.3) we can
we have to deal with the following three

cases:

In case i) we consider for small 6 &#x3E; 0 the function v E n BR) given by

where we can choose s &#x3E; 0 such that v is a subsolution. Since v  u on

Q r1 aBek for large k, we can apply the comparison lemma 3.4. We conclude
that exp [ia1J is the only possible tangent direction of the free boundary
at the origin, which proves the theorem in this particular case.

In case ii) we want to show that the free boundary is tangent to h1
.and r2 at the origin. First let us consider the left side. Define

It follows from 7.10.1) that 1 &#x3E; - ao, and we have 1  - tan ~1 if the free

boundary would not be tangent to Now choose free boundary points
(yk, hk) with Yk t 0 and - Z, and denote by uc:. a blow-up limit at the
origin with respect to - Then u.(- 1, 1) = 0 and u~ is positive in

Therefore (-1, 1) is a free boundary point of with slope Ill,
that is, with outer normal - exp where a1 +  0, in other
words

‘Since maps into À, and since ;t coincides with Bl(- e/2) in a neigh-
borhood of 1), it follows from 7.7 that the free boundary of u. is
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concave near (-1, 1). Therefore following the free boundary to the right
the values of Vu. change counterclockwise on hence the con-

cavity of the free boundary is preserved. On the other hand the free bound-
ary is not a straight line, since then VUoo would be a constant with

We thus see that going
along the free boundary we reach a point of in a non-tangential manner, y
hence u~ decays faster than linearly at this point, a contradiction to 4.7.
Now let us consider the free boundary on the right side, where we have to
give a different argument (not if ~2 c 0 ) . Assume that the origin is a limit

point of the free boundary from the right. Since the above blow-up limit u*
is positive in S2* we find for a subsequence points E Simp with

such that u(xx) = 0 and u(x) &#x3E; 0 for x E with  jx. Moreover
--~ 0 for x - oo. Denote by u~ a blow-up limit with respect to jx - Then

and

Therefore 1tc» is not a linear function, hence has an expansion

where H(x) -+ 0 0, and where a is a nonzero real and m an integer.
Since is bounded we must have and since maps into
we see that m + hence m = 2. Moreover, since near the origin
Vu maps into we conclude that H = 0. But then u~ = u* on 
a contradiction to the fact that Uoo has a zero on by construction.

Case iii) can be treated in a similar way.
Now we have to consider the case, that for the sequence at the beginning

we have - 0 for k ~ oo. Then the balls touch the free bound-

ary at certain points Yk. For a subsequence

and the blow-up sequence
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converges to a solution u * , ~ * in a neighborhood of Bx (- v * ) with u*(0 ) = o .
As before we see that Vu* = z* in the connected component of Q* m
~ ~u * &#x3E; 0} containing S2 * r1 B1 (- v * ) . In the cases where 0 e S~ * or where
0 E aS2* but v* is different from the outer normal of 8Q* at 0, the free bound-
ary .S2* n &#x3E; 0} must be non-empty, which implies z* = B.~(- e/~ ),
a contradiction. In the remaining case we infer

and z* is a negative multiple of the outer normal of aS2* at 0. Since we had

and v, ~ v2 we see that 0 E 8gp, which means that u * is a strict
subsolution and therefore one derives a contradiction by the following sub-
solution argument. For small E ~ 0, functions r~ E Co (]- ~, ~[) with

and 1](0) = 1, and smafl s consider the set

where ~1 and x2 are the tangential and normal components of x. Then

Uk &#x3E; 0 on Do for large k, hence there is a maximal value Sk for which

DS1t c 0}. Assuming that does not touch the fixed boundary there
must be a free boundary point k E Moreover for large k we
have

if v is the harmonic function in D,,, with

Therefore Vv(8) = « with 0  cx  I - Thus the inequality +
+ e/21  1 implies On the other hand, in

for E - 0 uniformly with respect to t and sk (we C8) we see that

which is larger than 2 for small c, and then contradicts the above estimate~
We thus proved that the sets touch the fixed boundary for all t and large k,
that is, Bj(0 ) contains no free boundary points of Uk is bounded and

the curvature of aS2k tends to zero). This fact certainly contradicts the
construction of the sequence uk .
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Thus it is shown that in order to prove the theorem we can assume that
approaches Bi(- e/2 ) 0. In other words (see 7.6, 7.7) we may

assume that for every blow-up limit u*, y* we have

.and that Q* f1 a .~~ * &#x3E; 0} consists of analytic curves concave to the fluid.
Then we can complete the proof using arguments which were given in
7.8-7.12.

8.5 REMARK. The statement 8.4 could be improved by showing that
actually some cases cannot occur. For instance, if Ft u F2 C Salr with a  7&#x26;,
it is clear that u(x) = o(x) for x -&#x3E; 0. If in addition - (3 j2)~ ~ ~1  a, 

the supersolution argument in 4.7 leads to a contradiction to 8.1.3).

’9. - Global results.

As pointed out in the introduction we will prove uniqueness and stability
theorems for the free boundary using the results in the previous sections.

9.1 ASSUMPTIONS. w’e that all consists of a finite number o f Ct,1
-curves belonging to Sairl or with angles between 0 and 2n at its

endpoints. Moreover, the number of points and segments of h) 
is supposed to be bounded uniformly in y. Assume uO &#x3E; 0 on Sres and UO = 0
on Sair. Suppose &#x3E; 0 for points X E Sres f1 Simp, and that for points
3J E Sreg f1 Sair the data satisfy 5.1 in some neighborhood of 0153.

9.2 CONCLUSION. If (u, y) is a weak solution, it follows from 4.6 that
y = and therefore at each point x E ~S~ which is limit point of the free
boundary the properties in 6.1, 7.1, 8.1, respectively, are satisfied, so that we
-can use all the results of this paper. Moreover, 9.1 implies that there is a

finite number of functions g, E CO(R, R) with

First let us prove the following.

9.3 UNIQUENESS Under the assumptions in 9.1 the solution

of the dam problem is unique up to ground water reservoirs, that is, there is
4 solutions u of the dam problem such that any other solution îí is of the
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form

with certain real numbers h; and connected components D; of Q n {h  h,l..
9.4 REMARK. The solution u in the statement of the theorem is the mi-

nimal solution constructed in[l]. If there exists a solution if beside u, then._
there are infinitely many such solutions given by arbitrary values h 3 C 
On the other hand it is easy to state global properties of the geometry of "~
which exclude the existence of ground water reservoirs.

PROOF OF 9.3. Pick two solutions u and v. First we will separate the

ground water reservoirs, y which means that yve will prove the following :
If .D is a connected component of Q r’1 {v &#x3E; 01 such that D r1 sees is

empty then

By 9.1 the set E:= D is finite, and

for all non-positive fllnctions ’E Hl,2(Q) vanishing in Be(E) and outside

B,5(D), if 6 is small enough depending on (2. Thus we choose cut-off functions.

7 E with

Then we take as test function

where hmin is the minimum height in D. We obtain for
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Hence it remains to show that u  v in each connected component of ~v &#x3E; 0~
touching Sres . This we can prove repeating the proof of the comparison
lemma 3.2 with the following slight modifications. 

,

We let E c 8Q be the finite set consisting of all limit points of the free
boundary of v, which are endpoints of the curves of aD, or which comes
from connected components of fv &#x3E; 01 touching Bres, but do not lie on upper
parts of 8Q. Since

for xo E E (see 5.3, 6.3, 7.3, 8.3) the set E satisfies the conditions of the

comparison lemma 3.2. Moreover we use the extended free boundary

in the proof of 3.2. Then we can proceed as in this proof except that we have
to give estimates near points of Le which are contained in Sair U on the

top of 8Q or in SimD at the bottom of In the latter case we can copy the

proof of 3.2 since 2~ is Lipschitz near such points by the above reservoir
argument. Since we did not prove that Zg is Lipschitz near the top we use
there a modified argument. Let

be a part of Sair on the top of the porous medium, such that

is a compact subset of ]yi , y2[. Moreover there is a continuous function g~I
with (y, gl(y)) E Ze for y,  y  Y2. Choose open sets V with K c V c ly,, Y2[
and non-negative functions with cc&#x3E; &#x3E; 0 on K. Then 

r1 graph (gl -+- w) is smooth. Now we change the definition of de in the proof
of 3.2 replacing ,~ r1 ~v &#x3E; o~ by ~h C gl ( y ) --~- c~ ( y )~ . Then the second

integral in the proof of 3.2 can be estimated as before, and the first integral
converges for E ~ 0 to

where
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But this can be estimated by

which by an appropriate choice of TT and co is arbitrary small. Since the same
argument holds on impervious parts on the top, the proof is complete.

The uniqueness of the solution of the dam problem immediately implies
the stability of the solution and the free boundary in the interior of S2 with
respect to small perturbations of the data. However, the behavior of the
free boundary near in general is not stable, but we can prove the fol-
lowing two statements.

9.5 STABILITY OF OVERFLOW. Suppose that etc. small 

~ perturbation of Q, etc., and an perturbation of UO
the assumptions in 9.1. Denote by and u the corresponding

unique solutions. If u &#x3E; 0 in a neighborhood of a point Xo e Bres n Bair’ then
~h~ same is true for U A for small A.

PROOF. If not, for a sequence A ~ 0 the points xo are limit points of
the free boundary of ’UA. Then by the overflow lemma 5.3 the functions u~
are uniformly Lipschitz continuous in QÄ r1 for some R &#x3E; 0. Hence

for a subsequence ’U¡ converges to a solution, which by uniqueness must
be u. Therefore it is Lipschitz continuous in Q m BR(x°), whereas by as-
sumption u is positive in Q r1 BR(x°) for small .R. This contradicts the

overflow lemma.

9.6 STABILITY OF THE RIGHT ANGLE PROPERTY. Assume the same as

in 9.5. If at a point x° e Sres n Sair with o’o  7r/2 the free boundary has

,tangent direction exp [~0~] (oo, d- as in 5.1, 5.5), then the same is true for U¡
jor small Â.

PROOF. Assume xo = 0. Since

we see that for given small

n B.(0) for some 8 &#x3E; 0. We conclude (see the proof of 5.6.3)) that for
small J,
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on 3(~r~-D~) with appropriate domains D~ containing B(0) for some 8
independent of Â. The comparison lemma 3.2 then yields that this

estimate is satisfied in Q). r1 B(0 ). Defining -r). as in 5.7 this means

for small A, if 6 was chosen small enough. Then 5.7.2) gives the result.

9.7 REMARK. The statement in 9.6 is true also for Go &#x3E; nl2, provided
we assume that 3~2 is a graph in vertical direction near the first point
above x,,.

9.8 EXAMPLES. Finally let us describe shortly some special global situa-
tions. First we consider the case of two reservoirs with

heights hl and h2, say, h2. This means that

then u2 is a supersolution, and ul is a sub-

solution, provided Sair c Ih &#x3E; Then by 3.2 every solution u satisfies

in the connected components n {U2 &#x3E; 0} touching ~52, and by 3.4
we in connected components of D r1 {u &#x3E; 0} touching 81.

Consider a point xOES2n8air with height h2 and standard normal "’0’ that
is 0   1. We conclude that near zo either u = u2 or the free boundary
has the right angle property (see theorem 5.7.2) and the proof of 5.6.2)).

Fig.9
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Similar we conclude for points Xo E 81 n Sair with height h, and standard
normal as before that either u = u1 or there is no free boundary near x.
(overflow case) (see theorem 5.7.3) and the proof of 5.6.3)). Moreover, every
solution u is positive in

Therefore, if is connected, we see that the free

boundary always forms a right angle at the upper reservoir, and that there
is always overflow near the lower reservoir. Under the additional assump-
tion that for every height ho all connected components D of S~ n fh  ~0}
with D n 8Q c 8imD intersect fh  h,} we obtain the uniqueness of the solu-
tion from 9.3. Such a situation is plotted in fig. 9. Some cases with a non
standard normal vo at the lower reservoir, that is, 0 &#x3E; e &#x3E; - 1, are shown
in fig. 10.1-4. It follows from the proof of Theorem 5.6 that the free boundary
behaves as drawn in fig. 10.

F i g . 10. 1 Fig.10.2

Fig.10.3 Fig.10.4
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All the conclusions are the same for the highest and lowest level in the
case of more than two water reservoirs. , , ,’ :

Now let us study the case of three reservoirs with levels 
where we think about a shape of the porous medium as shown in fig,,., 11.
In particular the height of the point P should be less than hi . _ I’ ,

Fig. I1

Under similar assumptions as above there is a unique solution for every
height h2. If h2 = hl we have overflow on both sides of the reservoir ~2,
and by the stability result the same is true for h2 near hl. Similar we have

the right angle property on both sides of 82 if h2 = h,,, and by the sta~
bility result the same is true for h2 near h3. Therefore (again a stability
argument) there must be an intermediate value of for which neither over-
flow nor a right angle occurs on the left side of 82. Then by Theorem 5.7
the free boundary must be horizontal there. It follows from [8] that the
left part of the free boundary is monotone. In addition the right free bound-

!

Fig. 12
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ary either has overflow at S2 and exactly one local estremum, or starts with
a right angle at S~ and is monotone. Similar one finds a value of h2, for which
the free boundary starts horizontal to the right of 82.

Another situation including a horizontal free boundary at the impervious
part is shown in fig. 12. For this example the monotonicity of the free
boundary also can be proved using arguments of [8].
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