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Abstract. This paper is a systematic theory for interfaces of fluids and solids, based on
the entropy principle of rational thermodynamics. It differs substantially from existing
presentations of interface problems and provides several new aspects. Balance laws for
mass, momentum, energy, and entropy are formulated as distributional equations, in this
version they attain their natural form. In addition, we give a systematic study of frame
indifference, and we show how this implies important structural properties of interfacial
terms. Finally, we give theorems on the necessity of entropy inequalities. Properties of
classical equilibrium thermodynamics and existing non-equilibrium thermodynamics are
contained in the theory presented here. The content of this paper will be completed by
another one, where more examples of interfacial problems, in particular those with surface
tension, will be treated.
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1 Introduction

The entropy principle, as formulated in rational thermodynamics, see for example [14],
[15], is a well established method to study the structure of physical conservation laws. It
is also a unique method to give an a-priori estimate, which can be used in cases one treats
the differential equations mathematically.

We start with a set of physical processes P , where for situations with a moving inter-
face, the laws in its natural way are formulated in the sense of distributions in the physical
space-time domain. The standard laws are those for mass, momentum and energy. This
applies also to elasticity, where these laws are transformed into partial differential equa-
tions in the reference configuration. It also applies, if interfaces are present. Then these
laws have to be understood in the sense of distributions. Indeed, this becomes obvious in
cases, where one interprets interfaces as limit of thin layers.

This distributional formulation can be transformed into a strong version. It consists
of differential equations in the surrounding volumes and differential equations and con-
straints on the interface. The corresponding analysis is contained in section 2.

In this paper we take the entropy principle from [14, section 1.3.1], which after a long
history of thermodynamics showed up as an intrinsic version of this principle. In section 6
the entropy principle for processes P is formulated in analogy to the conversation laws
in the space of distributions. That is, if (H,Ψ) are distributions denoting entropy and
entropy flux, then it is postulated, see (6.1), that

∂tH + div xΨ ≥ 0

in the set of processes P . In general, there are contribution of the entropy H and the
entropy flux Ψ in domains and on surfaces. Therefore the rules of thermodynamic pro-
cesses are formulated in different regions, and the concept of Lagrange multipliers in [14,
section 1.3.1.2] is no longer usable. The exploitation of the entropy principle becomes an
interesting procedure and uses its strong version, for which section 2 is a necessary tool.

In the isothermal case, the entropy principle reduces to a free energy inequality, which
usually follows from the entropy inequality by erasing the heat flux.

In general, the entropy inequality and for isothermal models the free energy inequal-
ity leads to restrictions on the structure of differential equations and the structure of
constitutive relations describing the class of physical processes.

Mathematically, the entropy principle for H, rewritten in terms of −H, and in the
isothermal case the free energy principle for F , that is, see (6.3),

∂tF + div xΦ ≤ Gext ,

serve the same purpose. The corresponding inequalities usually are taken as basic tool to
prove existence of solutions. In fact, integrating these inequalities over the space domain
one obtains the basic estimate for a mathematical treatment of the system. In special
cases, where the arising boundary terms vanish or are nonnegative, do to the boundary
conditions, the total negative entropy, respectively the total free energy, is a Liapunov
functional of the system.

There is a second basic tool, which describes the class of materials under consideration.
These are constitutive relations between the quantities in balance laws. In most cases
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these relations are given by pointwise equations for values and also derivatives of certain
independent variables. These constitutive functions are subject to the principle of frame
indifference, or the principle of objectivity.

In general, the principle of objectivity states, that all mathematical descriptions of
physical processes have to be invariant under observer transformations. In particular,
this applies to balance laws and constitutive functions, see section 4 and section 5. We
explain in section 3, how to formulate and exploit objectivity (or: frame indifference) for
distributional systems. Objectivity leads to transformation rules for all involved quantities
and to restrictions for the constitutive functions. Because objectivity in its general version
is somewhat unclear in the community, we have added a section about the force term, see
section 9.

One possibility to deal with the entropy principle is to describe a class of physical
processes by a set of balance laws with constraints like constitutive relations. Then,
usually based on previous knowledge, one defines an entropy and an entropy flux in
terms of the quantities in the balance laws, and one confirms the validity of the entropy
inequality. Then one says the considered model is consistent with thermodynamics.

The procedure of rational thermodynamics is able to produce also necessity results.
Again a class of physical processes is given by a set of balance laws with constitutive
relations. One starts with quite general constitutive functions for entropy and entropy
flux and computes the entropy production. Then one considers the entropy production as
algebraic expression for values and derivatives of the involved functions, and the balance
laws as algebraic constraints. The postulate that this expression has to be nonnegative
leads to conditions for the coefficients of this expression. It is well known, that with this
systematic procedure all formulas in classical thermodynamics can be derived.

If one deals with a new situation, the advantage of the procedure in rational ther-
modynamics becomes evident. The two physical principles, the entropy principle and
the principle of objectivity, imply certain structures on the underlying partial differential
equations. These structures are essential for the mathematical treatment of such quasi-
linear differential equations. Hence there is a strong influence of physical principles to the
mathematical understanding of these systems.

Notation: In this paper arguments, which represent physical quantities, are denoted in
their suggestive way. The same applies to arguments, which represent partial derivatives.
Here the notation as argument is quite formal, a perfectly rigorous way should use another
writing.

2 Analysis on interfaces

The basis for our analysis is the formulation of balance laws on moving interfaces in the
sense of distributions. Let D ⊂ IR× IRn be a (local) time-space domain. In applications
usually the dimension is n = 3, but also the cases n = 1, 2 can occur, if it is assumed that
the physical quantities are homogeneous in the remaining directions.

For a physical quantity E, given as distribution E ∈ D ′(D), together with correspond-
ing flux components Qi ∈ D ′(D), i = 1, . . . , n, and a production F ∈ D ′(D), we consider
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the distributional equation

∂tE +
∑n

i=1 ∂xi
Qi = F in D ′(D), (2.1)

that is,
〈 ∂tζ , E 〉 +

∑n
i=1 〈 ∂xi

ζ , Qi 〉 + 〈 ζ , F 〉 = 0 (2.2)

for all “test functions” ζ ∈ C∞0 (D). Similarly, the differential inequality

∂tE +
∑n

i=1 ∂xi
Qi ≤ F in D ′(D) (2.3)

means that
〈 ∂tζ , E 〉 +

∑n
i=1 〈 ∂xi

ζ , Qi 〉 + 〈 ζ , F 〉 ≥ 0 (2.4)

for all nonnegative functions ζ ∈ C∞0 (D).
In general there are three different equivalent versions of balance laws. They can be

formulated

• as differential equation,

• with test functions,

• with test volumes.

The formulation with test volumes is common in physical text books, and corresponds to
the transport theorem. The formulation with test functions is the distributional formula-
tion presented in this paper. In this formulation balance laws appear in its natural form.
The equivalence of the distributional formulation and the formulation as differential equa-
tion will be the content of theorem 2.4. Formally, the formulation with test volumes can
be viewed as the distributional formulation with characteristic functions as test functions.

Later we shall consider distributional equations for example for mass, momentum, and
energy, where the distributions will have contributions in open sets as well as on fixed or
moving interfaces. For such surfaces two vector fields are important, the velocity vector
and the curvature vector.

2.1 Evolving surfaces. For a given set Γ ⊂ IR × IRn let Γt := {x ∈ IRn ; (t, x) ∈ Γ}
for t ∈ IR. Let 0 ≤ d ≤ n be an integer. Then t 7→ Γt is called a d-dimensional smooth
“evolving surface” or “moving surface”, if Γ is a smooth d + 1-dimensional surface (for
our purpose a C2-surface), such that it’s tangent space never is “spacelike”, that is

T(t,x)(Γ) 6⊂ {0} × IRn for all (t, x) ∈ Γ.

Then the following holds:

(1) Velocity vector. For (t, x) ∈ Γ there is a unique vector vΓ(t, x) ∈ IRn with

(1,vΓ(t, x)) ∈ T(t,x)(Γ) and vΓ(t, x) ∈ Tx(Γt)
⊥. (2.5)

An equivalent characterization of vΓ is, that for every C1-curve s 7→ γ(s) ∈ Γs with
γ(t) = x

γ′(t)− vΓ(t, x) ∈ Tx(Γt) and vΓ(t, x) ∈ Tx(Γt)
⊥. (2.6)
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Therefore n•γ′(t) = n•vΓ(t, x) for every normal vector n ∈ Tx(Γt)
⊥. Moreover

T(t,x)(Γ) = span {(1,vΓ(t, x))} ⊕ ({0} × Tx(Γt)),

T(t,x)(Γ)⊥= {(−vΓ(t, x)•n,n) ; n ∈ Tx(Γt)
⊥}. (2.7)

(2) Curvature vector. For (t, x) ∈ Γ there is a unique vector κΓ(t, x) ∈ Tx(Γt)
⊥⊂ IRn

satisfying

n•κΓ(t, x) = n•∑d
k=1 ∂τk(x)τk(x) for n ∈ Tx(Γt)

⊥

for every local tangential orthonormal system {τ1, . . . , τd} of Γt at x.

We mention, that vΓ(t, x) and κΓ(t, x) are independent of local orientations of the
surface and that 1

d
κΓ(t, x) is the “mean curvature vector” of Γt at x. Note, that Tx(Γt) ⊂

IRn is the tangent space of the time slice Γt of Γ at t, whereas T(t,x)(Γ) ⊂ IR1+n is the
tangent space of the entire surface Γ ⊂ IR1+n .

Proof (1). By assumption there is a vector v ∈ IRn and a d-dimensional subspace V ⊂ IRn

such that
T(t,x)(Γ) = {a(1, v) + (0, τ) ; a ∈ IR, τ ∈ V }. (2.8)

Define vΓ(t, x) := v − P (v), where P is the orthogonal projection of IRn to V . Using
a local parametrization of Γ around (t, x) one verifies that V = Tx(Γt) and that (2.6)
holds.

Proof (2). This is standard differential geometry for surfaces in IRn. There is a unique
symmetric bilinear map B : Tx(Γt) × Tx(Γt) → Tx(Γt)

⊥ satisfying B(τ1(x), τ2(x)) =
P (∂τ1(x)τ2(x)) for all smooth local tangential vector fields τ1, τ2 of Γt around x, where

now P is the orthogonal projection of IRn to Tx(Γt)
⊥. Then κΓ(t, x) := traceB.

2.2 Surface measure. Let Γ ⊂ IR× IRn be an evolving surface as in 2.1. In the following
we shall work with the surface measure µΓ, defined by

µΓ := (L1⊗Hd)xΓ,

that is ∫

D

f dµΓ =

∫

IR

∫

Γt

f(t, x) dHd(x) dL1(t).

Here and in the following Hd denotes the d-dimensional Haussdorff measure (surface mea-
sure) and Lm the m-dimensional Lebesgue measure. Another possibility would be to use
Hd+1xΓ. One easily verifies that

∫

Γ

f dHd+1 =

∫

Γ

√
1 + |vΓ |2 · f d(L1⊗Hd) =

∫

D

√
1 + |vΓ |2 · f dµΓ. (2.9)

However, in the following we shall work with µΓ, since it has easier properties under
observer transformations (see the proof of 5.1).
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2.3 Definition. On Γ we use the following differential operators:

(1) ∂Γ
t e(t, x) := ∂(1,vΓ)e(t, x) = (∂t + vΓ•∇)e(t, x) for e : Γ → IR,

(2) ∇Γe(t, x) :=
∑d

k=1(∂τk
e(t, x))τk for e : Γ → IR,

(3) divΓq(t, x) :=
∑d

k=1 τk•∂τk
q(t, x) for q : Γ → IRn.

Here {τk ; k = 1, . . . , d} is any orthonormal system of Tx(Γt). Moreover, there are also
time-space analogues, defined by

(4) ∇Γe :=
∑d

k=0(∂τk
e)τ k for e : Γ → IR,

(5) divΓq :=
∑d

k=0 τ k•∂τk
q for q : Γ → IRn+1.

Here {τ k ; k = 0, . . . , d} is any orthonormal system of T(t,x)(Γ).

With this we are able to formulate the following theorem for balance laws on evolving
surfaces.

2.4 Theorem. Let D ⊂ IR × IRn be an open set and Γ ⊂ D a smooth evolving surface
without boundary in D, that is Γ ∩ D ⊂ Γ. Then for smooth functions e : Γ → IR,
q : Γ → IRn, f : Γ → IR the following is equivalent:

(1) Distributional formulation.

∂t(eµΓ) + div(qµΓ) = (resp. ≤) fµΓ in D ′(D).

(2) Strong formulation in time-space.

(e, q)(t, x) ∈ T(t,x)(Γ) for all (t, x) ∈ Γ,

√
1 + |vΓ |2 · divΓ


 1√

1 + |vΓ |2
(e, q)


 = (resp. ≤) f on Γ.

(3) Strong formulation.

(q − evΓ)(t, x) ∈ Tx(Γt) for all (t, x) ∈ Γ,

∂Γ
t e− e κΓ•vΓ + divΓ(q − evΓ) = (resp. ≤) f on Γ.

Supplement: The last differential equation is equivalent to

∂Γ
t e+ divΓq = (resp. ≤) f on Γ.

Note, that here the term under the divergence has a spatial normal component evΓ.
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We mention, that the strong formulations in 2.4(2) and 2.4(3) not only contain differ-
ential equations on Γ, but also the condition, that q − evΓ has to be a spatial tangential
vector field.

Proof. By (2.4) the distributional inequality says

∫

D

(∂tζ · e+∇ζ•q + ζ · f) dµΓ ≥ 0 (2.10)

for all nonnegative functions ζ ∈ C∞0 (D). We write this as weak divergence equation in
the time-space domain. Setting ∇ := (∂t,∇) and

w :=

√
1 + |vΓ |2 (2.11)

and using (2.9), equation (2.10) becomes

∫

Γ

1

w
(∇ζ•(e, q) + ζ · f) dHd+1 ≥ 0. (2.12)

This then also holds for all nonnegative C1-functions ζ with compact support in D.
Now replace ζ ≥ 0 by ζ̃ = ζ · (1+sin (aψ)) ≥ 0, where a ∈ IR and ψ is any C1-function

vanishing on Γ. Then ∇ζ is replaced by

∇ζ̃ = (1 + sin (aψ))∇ζ + ζcos (aψ)a∇ψ.

Since ψ = 0 on Γ, this is equal to

∇ζ̃ = ∇ζ + ζa∇ψ on Γ.

Then (2.12) implies

0 ≤
∫

Γ

1

w
(∇ζ̃•(e, q) + ζ̃ · f) dHd+1

=

∫

Γ

1

w
(∇ζ•(e, q) + ζ · f) dHd+1 + a

∫

Γ

1

w
ζ∇ψ•(e, q) dHd+1.

Since a is an arbitrary number, it follows that the additional a-term has to vanish, that
is ∫

Γ

1

w
ζ∇ψ•(e, q) dHd+1 = 0.

Since this is true for all nonnegative ζ, we conclude that

∇ψ•(e, q) = 0 on Γ.

One can choose ψ so that n = ∇ψ on Γ with a smooth normal field n (not a unit normal),
that is n(t, x) ∈ T(t,x)(Γ)⊥ at a given point (t, x) ∈ Γ. Doing so one concludes that

(e, q)(t, x) ∈ T(t,x)(Γ).
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This is equivalent to (see (2.7))

q0(t, x) := (q − evΓ)(t, x) ∈ Tx(Γt). (2.13)

With this property (2.12) becomes

∫

Γ

(∇Γζ•( 1

w
(e, q)) + ζ · 1

w
f) dHd+1 ≥ 0 (2.14)

with a tangential vector field 1
w
(e, q). Integration by parts on Γ gives that

0 ≤
∫

Γ

ζ ·
(
−divΓ(

1

w
(e, q)) +

1

w
f

)
dHd+1

=

∫

D

ζ ·
(
−wdivΓ(

1

w
(e, q)) + f

)
dµΓ

for all nonnegative test functions ζ, hence

w · divΓ( 1
w
(e, q)) ≤ f on Γ. (2.15)

This proves (2). We claim that this, together with property (2.13), is equivalent to the
differential inequality in (3). In fact, since by equation (2.13)

(e, q) = e(1,vΓ) + (0, q0),

the left-hand side in (2.15) equals

= (1,vΓ)•∇Γe+ e · w · divΓ( 1
w
(1,vΓ)) + w · divΓ( 1

w
(0, q0)).

Using the differential identities (2.16) and (2.17) (see lemma 2.5 below) this equals

= ∂Γ
t e− e · κΓ•vΓ + divΓq0,

which proves (3). The supplement follows, since

divΓ(evΓ) = −e · κΓ•vΓ

by the following proposition 2.6, if one sets n := evΓ as spatial normal vector field.

Thus it remains to show that

2.5 Lemma. Let Γ ⊂ IR× IRn as in 2.1, and w as in (2.11). Then

w · divΓ( 1
w
(1,vΓ)) = −κΓ•vΓ, (2.16)

and for every spatial tangential vector field q0, that is q0(t, x) ∈ Tx(Γt),

w · divΓ( 1
w
(0, q0)) = divΓq0. (2.17)
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Proof. To prove (2.16), consider a local orthonormal system {τk(t, x) ; k = 1, . . . , d} of
Tx(Γt). Setting

τ 0 :=
1

w
(1,vΓ), τ k := (0, τk) for k = 1, . . . , d,

we obtain a local orthonormal system {τ k(t, x) ; k = 0, . . . , d} of T(t,x)(Γ). Then

w · divΓ( 1
w
(1,vΓ)) = w

∑d
k=0 τ k•∂τk

τ 0.

Since τ 0•∂τ0
τ 0 = 0 and τ k•∂τk

τ 0 = −(∂τk
τ k)•τ 0 for k = 1, . . . , d, this equals

= −w∑d
k=1 τ 0•∂τk

τ k = −(1,vΓ)•∑d
k=1 ∂τk

(0, τk)

= −vΓ•
∑d

k=1 ∂τk
τk = −vΓ•κΓ

by the properties in definition 2.1(1).
Equation (2.17) follows from the following computation for test functions ζ ∈ C∞0 (D),

where we use that q0 is a spatial tangential vector field, that is, (0, q0) is tangential to Γ:
∫

D

ζ · w · divΓ(
1

w
(0, q0)) dµΓ =

∫

Γ

ζ · divΓ(
1

w
(0, q0)) dHd+1

= −
∫

Γ

1

w
(∇Γζ)•(0, q0) dHd+1 (integration by parts on Γ)

= −
∫

Γ

1

w
(∇Γζ)•q0 dHd+1 (note, that ∇Γ and ∇Γ are different)

= −
∫

IR

(∫

Γt

(∇Γζ)•q0 dHd

)
dL1(t) (see (2.9))

=

∫

IR

(∫

Γt

ζ · divΓ(q0) dHd

)
dL1(t) =

∫

D

ζ · divΓ(q0) dµΓ.

2.6 Proposition. Let Γ ⊂ IR× IRn as in 2.1. Then

divΓn = −κΓ•n (2.18)

for spatial normal vector fields n, that is n(t, x) ∈ Tx(Γt)
⊥.

Note: It is n a not necessary unit vector field.

Proof. We use the notation in 2.3. Then, by the product rule,

divΓn =
∑d

k=1 τk•∂τk
n = −∑d

k=1(∂τk
τk)•n = −κΓ•n,

since τk•n = 0 for k = 1, . . . , d.

As a consequence of 2.4 one obtains the well known transport theorem, which in text
books often is taken as a starting point for the analysis of moving interfaces (see e.g. [12],
[16], [10]). In this paper we shall not make use of this theorem.

In general, if n = 3 the set Γt can be a surface, a line measure or a point measure. Let
us consider a distributional balance law for d = n − 1, that is for moving hypersurfaces
separating two media.
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2.7 Moving interfaces. We consider the local situation. Let D ⊂ IR × IRn be an open
set consisting of two open sets Ω1 and Ω2 (that is d = n in 2.1) separated by a smooth
evolving hypersurface Γ (that is d = n− 1 in 2.1), in particular, Γ ⊂ D has no boundary
within D, that is Γ ∩D = Γ. For (t, x) ∈ Γ we let

νm(t, x) ∈ Tx(Γt)
⊥⊂ IRn the external unit normal of Ωm

t . (2.19)

Then ν1 + ν2 = 0. Moreover, vΓ(t, x) as well as κΓ(t, x) are scalar multiples of νm(t, x).
We denote by µΩ1 , µΩ2 , µΓ the corresponding measures from 2.2. Then a single balance
law is an equality (resp. inequality) of the form

∂tE + divQ = (resp. ≤) F in D ′(D) (2.20)

with distributions given by

E =
∑2

m=1 e
mµΩm + esµΓ,

Q =
∑2

m=1 q
mµΩm + qsµΓ,

F =
∑2

m=1 f
mµΩm + f sµΓ.

(2.21)

Here em, qm
i , f

m : Ωm → IR and es, qs
i , f

s : Γ → IR for simplicity are assumed to be
smooth functions.

The interface version of 2.4 is

2.8 Theorem. Under the assumptions in 2.7 distributional law (2.20) is equivalent to the
following:

(1) For m = 1, 2 in Ωm:

∂te
m + divqm = (resp. ≤) fm.

(2) For all (t, x) ∈ Γ:

(qs − esvΓ)(t, x) ∈ Tx(Γt).

(3) On Γ:

∂Γ
t e

s − es κΓ•vΓ + divΓ(qs − esvΓ)

= (resp. ≤) f s +
∑2

m=1(q
m − emvΓ)•νm.

Without any interface quantities the last identity is the “Rankine-Hugoniot condition”.
With interface quantities it contains “Kotchine conditions”. As in 2.4(3) the left-hand
side of the differential equation in 2.8(3) equals ∂Γ

t e
s + divΓqs. Here the flux qs has a

normal component n•qs(t, x) = e(t, x)n•vΓ(t, x) in direction n ∈ Tx(Γt)
⊥.
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Proof. By (2.4) and (2.9) the distributional inequality in (2.20) means

2∑
m=1

∫

Ωm

(∂tζ · em +∇ζ•qm + ζ · fm) dLn+1

+

∫

Γ

(∂tζ · es +∇ζ•qs + ζ · f s) d(L1⊗Hn−1) ≥ 0

(2.22)

for all nonnegative ζ ∈ C∞0 (D). Integration by parts for the time-space domain Ωm yields
for m = 1, 2

∫

Ωm

(∂tζ · em +∇ζ•qm + ζ · fm) dLn+1

=

∫

Γ

ζ · (em, qm)•νm dHn +

∫

Ωm

ζ · (−∂te
m − divqm + fm) dLn+1.

Here νm is the external unit normal of Ωm as time-space domain, which by 2.1(1) satisfies

νm = 1
w
(−vΓ•νm, νm), w :=

√
1 + |vΓ |2. (2.23)

Therefore, by (2.9),

∫

Γ

ζ · (em, qm)•νm dHn =

∫

Γ

ζ · (qm − emvΓ)•νm d(L1⊗Hn−1).

Inserting this into (2.22) we get

2∑
m=1

∫

Ωm

ζ · gm dLn+1 +

∫

Γ

(∂tζ · es +∇ζ•qs + ζ · gs) d(L1⊗Hn−1) ≥ 0,

where

gm := −∂te
m − divqm + fm,

gs := f s +
2∑

m=1

(qm − emvΓ)•νm.

Choosing nonnegative test functions ζ ∈ C∞0 (Ωm) we obtain gm ≥ 0 in Ωm, which shows
(1). Then replace ζ by ζ ·ηδ with a sequence of smooth functions ηδ satisfying 0 ≤ ηδ ≤ 1,
ηδ = 1 is some neighbourhood of Γ, and ηδ ↘ 0 as δ ↘ 0 pointwise in D \ Γ. This gives

∫

Γ

(∂tζ · es +∇ζ•qs + ζ · gs) d(L1⊗Hn−1) ≥ 0.

Then apply 2.4.

In the following sections we will apply these results to evaluate balance laws.
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3 The principle of frame indifference

Restrictions for the description of a class of physical processes come from the “principle
of objectivity”, or “principle of frame indifference”. It consists of the following axioms:

• The value of physical quantities depend on the observer.

• The type of a physical quantity is given by a transformation rule.

• The description of a physical process has to be independent of the observer.

The last property is “objectivity” and states, that the description of physical processes
has to be the same for all observers. This applies to formulations with differential equa-
tions, see section 5, as well as to formulations with constitutive relations or constraints,
see section 4. The first property is the well known “relativity”, an classical example being
the Doppler effect. The second property is “rationality” saying, that is is possible to de-
scribe analytically, how quantities change under observer transformations. Therefore the
description of any situation in classical continuum physics has to be “frame indifferent”,
and this description includes everything like differential equations, constitutive relations,
the domain of definition, positivity of functions.

In order to formulate the principle of objectivity, one has to specify how coordinates
transform, where in this paper we restrict to classical continuum physics. A general
Newtonian observer transformation of the coordinates y = (t, x) into coordinates y∗ =
(t∗, x∗) has the form

[
t
x

]
= y = Y (y∗) =

[
t∗ + a

X(t∗, x∗)

]
=

[
t∗ + a

Q(t∗)x∗ + b(t∗)

]
(3.1)

with a ∈ IR and smooth functions b : IR → IRn and Q : IR → IRn×n satisfying QTQ = Id
and detQ = 1. Then the derivative of Y is

DY = (Yk ′l)k,l=0,...,n =

[
1 0
Ẋ Q

]
.

Here D denotes the differential with respect to (t∗, x∗) and Ẋ the time derivative

Ẋ(t∗, x∗) :=
∂

∂t∗
X(t∗, x∗) = Q̇(t∗)x∗ + ḃ(t∗).

A special observer transformation is an Euclidean transformation, which is of the form

[
t
x

]
=

[
t∗ + a

Qx∗ + t∗c + b

]
(3.2)

with a ∈ IR, b, c ∈ IRn, Q ∈ IRn×n satisfying QTQ = Id and detQ = 1. If Y is a Newton
transformation, then for any (t∗0, x

∗
0) the approximation

[
t∗

x∗

]
7→

[
t
x

]
= Y (t∗0, x

∗
0) + DY (t∗0, x

∗
0)

[
t∗ − t∗0
x∗ − x∗0

]

12



is an Euclidean transformation. Indeed this is a characterization of Newtonian transfor-
mations.

In principle, one can consider frame indifference with respect to a given group of
transformations. However, because of its importance, we will, in this paper, always take
the group of Newton transformations.

The following definitions work for any group of observer transformations. A general
nonlinear “transformation rule” for a set of quantities U has the following form: Consider
for one observer a set of quantities (t, x) 7→ U(t, x) arising in some description. Assume
that for another observer, with a transformation

Y : IR× IRn → IR× IRn, (t∗, x∗) 7→ (t, x) = Y (t∗, x∗)

of variables according to (3.1), these quantities are (t∗, x∗) 7→ U∗(t∗, x∗). The connection
between these values are given by a, in general nonlinear, function ZY with

U(t, x) = ZY (t∗, x∗, U∗(t∗, x∗)) for all (t, x) = Y (t∗, x∗). (3.3)

Here consistency with the group structure of the set of observer transformations is re-
quired: If (t∗, x∗) = Y ∗(t̄, x̄) is another observer transformation, then (t, x) = (Y◦Y ∗)(t̄, x̄),
and therefore U∗(t∗, x∗) = ZY ∗(t̄, x̄, Ū(t̄, x̄)) and U(t, x) = ZY◦Y ∗(t̄, x̄, Ū(t̄, x̄)) is satisfied.
It then follows from (3.3) that

ZY◦Y ∗(t̄, x̄, Ū(t̄, x̄)) = ZY (Y ∗(t̄, x̄), ZY ∗(t̄, x̄, Ū(t̄, x̄))) (3.4)

has to be satisfied. All explicit rules in this paper have this property.
A “physical quantity” is a family of time-space functions for all observers, where the

domain of definition and also the values depend on the observer, and where the type of
such a quantity is defined by a transformation rule. We give two basic examples.

First the definition of a “velocity”. Let (t, x) 7→ v(t, x) ∈ IRn be the vector field
for a particular observer, and (t∗, x∗) 7→ v∗(t∗, x∗) ∈ IRn the corresponding vector field
for another observer, with (3.1) as transformation of coordinates. Then we consider the
transformation rule

v(t, x) = Ẋ(t∗, x∗) +Q(t∗)v∗(t∗, x∗) for (t, x) = Y (t∗, x∗).

The short notation for this is

v◦Y = Ẋ +Qv∗. (3.5)

This is the definition of a velocity.
The second example involves only orthogonal transformations. Let G be a k-tensor,

that is a quantity

G = (Gi1,...,ik)i1,...,ik=1,2,...,n .

Then G is called an “objective k-tensor”, if it obeys the transformation rule

Gi1,...,ik◦Y =
∑n

j1,...,jk=1

(∏n
l=1Qiljl

)
G∗j1,...,jk

.

13



The following are special objective k-tensors: For k = 0 the function G is called an
“objective scalar” satisfying G ◦Y = G∗, for k = 1 an “objective vector” satisfying
G◦Y = QG∗, that is Gi◦Y =

∑n
j=1QijG

∗
j , and for k = 2 an “objective tensor” satisfying

G◦Y = QG∗QT, that is Gik◦Y =
∑n

j,l=1QijQklG
∗
jl.

Examples of objective scalars are mass, concentrations, phase fractions, pressure, sur-
face tension, the divergence of a velocity, internal energy, and entropy. Examples of
objective vectors are diffusive fluxes, velocity differences, internal forces, and heat flux.
Examples of objective tensors are the stress tensor and the symmetric part of a velocity
gradient.

Transformation rules for derivatives of a physical quantity are obtained by differenti-
ating the transformation rule of this quantity. Note, that transformation rules never are
subject to a physical description, that is the properties of the set P . The only purpose of
a transformation rule is the definition of a physical quantity.

4 Objectivity of constitutive relations

An important type of equations describing physical processes are constitutive relations.
A particular choice of such a relation is equivalent to the selection of a class of special
materials. A constitutive relation is a pointwise equation given by a constitutive function.
Objectivity means, that constitutive functions have to be the same for all observers. Let
us explain this for a quite general class of constitutive relations appearing in balance laws
describing a class of physical processes.

Assume that the components of (t, x) 7→ G(t, x) and (t, x) 7→ U(t, x) are quantities
like scalars, vectors, tensors, ore others. A “constitutive relation” between G and U is a
function Ĝ, such that for all processes under consideration the identity

G(t, x) = Ĝ(U(t, x))

is satisfied for all (t, x) in the domain of definition.

The principle of objectivity states, that the “constitutive function” Ĝ has to be the
same for all observers. This is also called the “principle of material frame indifference”.
Therefore, if G∗ and U∗ are the same quantities for another observer with coordinates
(t∗, x∗), then the equation

G∗(t∗, x∗) = Ĝ(U∗(t∗, x∗))

has to be satisfied in the transformed domain. Note, that here the same function Ĝ is
used. Knowing the transformation rules for G and U one obtains functional equations for
the constitutive function Ĝ.

The pattern to exploit objectivity is as follows: As an example assume a general non-
linear transformation rule for (G,U) with the special property, that in the transformation
of the U -variables the G-variables do not enter. That is, with certain functions Z1

Y and
Z2

Y

G(t, x) = Z1
Y (t∗, x∗, G∗(t∗, x∗), U∗(t∗, x∗)), U(t, x) = Z2

Y (t∗, x∗, U∗(t∗, x∗))

14



for all (t, x) = Y (t∗, x∗), where Y is the observer transformation. In short notation this
reads

G◦Y = Z1
Y (•, G∗, U∗), U ◦Y = Z2

Y (•, U∗). (4.1)

Such a rule covers nearly all examples, where usually Z1
Y and Z2

Y are (affine) linear func-
tions in the last arguments. We have

G = Ĝ(U) and G∗ = Ĝ(U∗).

Since the first identity is the same as G◦Y = Ĝ(U ◦Y ) we see that

Ĝ(Z2
Y (•, U∗)) = Ĝ(U ◦Y ) = G◦Y = Z1

Y (•, G∗, U∗) = Z1
Y (•, Ĝ(U∗), U∗).

Therefore, for all occurring functions U∗ in the considered class of physical processes and
all observer transformations Y the identity

Ĝ(Z2
Y (•, U∗)) = Z1

Y (•, Ĝ(U∗), U∗) (4.2)

has to be satisfied. This is a functional equations for the constitutive function Ĝ, and
therefore is a restriction on this function. How to solve such functional equations in
standard situations is well known, but in general can be a difficult algebraic problem.

5 Objectivity of differential equations

We consider a set of solutions of a system of distributional balance laws. On a certain
time-space domain D ⊂ IR×IRn the distributions are Ej, Qj

i , F
j ∈ D ′(D) for j = 1, . . . ,M

satisfying
∂tE

j +
∑n

i=1 ∂xi
Qj

i = F j in D ′(D) for j = 1, . . . ,M. (5.1)

Objectivity of balance laws
First let us consider a special system with

Ej = ejµΓ, Qj
i = qj

iµΓ, F j = f jµΓ

for j = 1, . . . ,M in D with a (d + 1)-dimensional surface Γ ⊂ D ⊂ IR × IRn without
boundary in D, that is ∂Γ ⊂ ∂D. (The classical case, in which Γ = D is (n + 1)-
dimensional, is included as a special case.) Then the distributional equations in (5.1)
read ∫

D

(
∂tζ•e+

n∑
i=1

∂xi
ζ•qi + ζ•f

)
dµΓ = 0 for ζ ∈ C∞0 (D; IRM), (5.2)

where e = (ej)j=1,...,M , qi =
(
qj
i

)
j=1,...,M

, and f = (f j)j=1,...,M .

We assume that the system is complete in the sense, that we are able to define the
“physical type” of this system by a linear transformation rule for test functions of the
form

ζ◦Y = Z −Tζ∗, (5.3)

that is ζ∗ = Z Tζ ◦Y with a given matrix Z. We mention, that this rule applies only
to certain special cases of balance laws, but these cases are typical and important. The
principle of objectivity requires, that the form of (5.2) is the same for all observers.
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5.1 Lemma. If the physical type of system (5.2) is given by transformation rule (5.3) for
test functions, then the system is objective, if

e◦Y = Ze∗,

qi◦Y = ẊiZe
∗ +

∑n
j=1QijZq

∗
j for i = 1, . . . , n,

f ◦Y = Z ′0e
∗ +

∑n
j=1 Z ′jq

∗
j + Zf ∗.

(5.4)

Here Z ′0 = Z ′t∗ and Z ′j = Z ′x∗j are the partial derivatives of the matrix Z.

Proof. Setting ∂0 := ∂t, q0 := e, and ∂i := ∂xi
for i = 1, . . . , n, the system of balance laws

(5.2) reads in distributional form

∫

D

( n∑

k=0

∂kζ•qk + ζ•f
)

dµΓ = 0 for ζ ∈ C∞0 (D; IRM). (5.5)

We have to show that this form is the same for all observers. By (5.3) the transformation
rule is ζ◦Y = Z −Tζ∗ , that is ζ∗ = Z Tζ◦Y , so that for l = 0, . . . , n

∂lζ
∗ = Z ′l

Tζ◦Y +
∑n

k=0 Yk ′lZ
T(∂kζ)◦Y. (5.6)

With D = Y (D∗), hence also Γ = Y (Γ∗), we compute

∫

D∗

( n∑

l=0

∂lζ
∗•q∗l + ζ∗•f ∗

)
dµΓ∗

=

∫

D∗

( n∑

k=0

(∂kζ◦Y )•(
n∑

l=0

Yk ′lZq
∗
l ) + (ζ◦Y )•(Zf ∗ +

n∑

l=0

Z ′lq
∗
l )

)
dµΓ∗

=

∫

D

( n∑

k=0

∂kζ•(
n∑

l=0

Yk ′lZq
∗
l )◦Y −1 + ζ•(Zf ∗ +

n∑

l=0

Z ′lq
∗
l )◦Y −1

)
dµΓ ,

since the Jacobian of the transformation of dµΓ∗ into dµΓ equals 1. The last integral is
of the same form as in (5.5), if the transformation rules

qk◦Y =
∑n

l=0 Yk ′lZq
∗
l for k = 0, . . . , n,

f ◦Y =
∑n

l=0 Z ′lq
∗
l + Zf ∗

(5.7)

are satisfied. With e = q0 this becomes (5.4).

As examples see the mass-momentum system in section 8 and the mass-momentum-
energy system in section 10.

We did not claim, that (5.4) is necessary for objectivity, since one can add terms in
(5.7), for which the weak integral will be unchanged. However, in a special case this can
be excluded: We mention, that (5.4) implies e◦Y = Ze∗, and it has been shown in [2,
Section 7], that under quite general assumptions on the class of processes this equation
implies transformation rules (5.4) for all other quantities.
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Objectivity of distributional laws
We adopt the above considerations to a general system of distributional equations as
in (5.1). With vectorial distributions E = (Ej)j=1,...,M , Qi =

(
Qj

i

)
j=1,...,M

, and F =

(F j)j=1,...,M and using the vector notation for test functions ζ = (ζj)j=1,...,M ∈ C∞0 (D; IRM)
system (5.1) becomes

〈 ∂tζ , E 〉 +
∑n

i=1 〈 ∂iζ , Qi 〉 + 〈 ζ , F 〉 = 0 for all ζ ∈ C∞0 (D; IRM). (5.8)

As above the “physical type” of this system is defined by transformation rule (5.3) for
test functions, where ζ∗ is the test function of the new observer, and the matrix Z usually
is a differential operator in Y . Again objectivity means, that (5.8) has to have the same
form for all observers.

5.2 Lemma. If the physical type of system (5.8) is given by transformation rule (5.3),
then the system is objective, if

SY (E) = ZE∗,

SY (Qi) = ẊiZE
∗ +

∑n
j=1QijZQ

∗
j for i = 1, . . . , n,

SY (F ) = Z ′0E
∗ +

∑n
j=1 Z ′jQ

∗
j + ZF ∗ .

(5.9)

Remark: Here for a distribution G ∈ D ′(D) the transformed distributions SY (G) ∈
D ′(D∗), with D = Y (D∗), is defined by 〈 ζ∗ , SY (G) 〉 := 〈 ζ∗◦Y −1 , G 〉.
Proof. As above, we introduce ∂0 := ∂t and Q0 := E. Then, for an observer with ∗-values,

〈 ∂0ζ
∗ , E∗ 〉 +

∑n
i=1 〈 ∂iζ

∗ , Q∗i 〉 + 〈 ζ∗ , F ∗ 〉
=

∑n
l=0 〈 ∂lζ

∗ , Q∗l 〉 + 〈 ζ∗ , F ∗ 〉
=

∑n
k=0 〈 (∂kζ)◦Y ,

∑n
l=0 Yk ′lZQ

∗
l 〉 + 〈 ζ◦Y , ZF ∗ +

∑n
l=0 Z ′lQ

∗
l 〉

using (5.6) for the test function. Now, for the original observer,

〈 ∂0ζ , E 〉 +
∑n

i=1 〈 ∂iζ , Qi 〉 + 〈 ζ , F 〉
=

∑n
k=0 〈 ∂kζ , Qk 〉 + 〈 ζ , F 〉

=
∑n

k=0 〈 (∂kζ)◦Y , SY (Qk) 〉 + 〈 ζ◦Y , SY (F ) 〉 .
From this one sees that objectivity for system (5.1) is satisfied, if

SY (Qk) =
∑n

l=0 Yk ′lZQ
∗
l for k = 0, . . . , n,

SY (F ) =
∑n

l=0 Z ′lQ
∗
l + ZF ∗.

We mention that these identities are generalizations of the identities in 5.1, since for
distributions, which are given on surfaces, we have an explicit form of the operator SY .
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5.3 Surface measures. If for an evolving d-dimensional surface Γ ⊂ D without boundary
in D a distribution G ∈ D ′(D) is given by

G = gµΓ,

then for an observer transformation Y and Γ = Y (Γ∗) the transformed distribution SY (G)
is given by

SY (G) = g◦Y µΓ∗ .

Proof. The distributional equation G = gµΓ means that

〈 ζ , G 〉 =

∫

IR

∫

Γt

ζ(t, x)g(t, x) dHd(x) dt.

Then the transformed distribution SY (G) is given by

〈 ζ∗ , SY (G) 〉 =
〈
ζ∗◦Y −1 , G

〉

=

∫

IR

∫

Γt

ζ∗◦Y −1(t, x)g(t, x) dHd(x) dt

=

∫

IR

∫

Γ∗
t∗
ζ∗(t∗, x∗)g◦Y (t∗, x∗) dHd(x

∗) dt∗.

This is due to the fact (compare the proof of 5.1), that the Jacobian of the transformation
equals 1. Thus SY (G) = g◦Y µΓ∗ .

Consequences
From the previous results we obtain the following.

5.4 Proposition. Consider system (5.1) for an evolving interface with

Ej =
∑2

m=1 e
mjµΩm + esjµΓ,

Qj =
∑2

m=1 q
mjµΩm + qsjµΓ,

F j =
∑2

m=1 f
mjµΩm + f sjµΓ,

(5.10)

with Ωm, m = 1, 2, and Γ as in 2.7. Define the physical type of this system by trans-
formation rule (5.3) for test functions. Then objectivity is satisfied, if the three sets of
quantities (em, qm, fm) for m = 1, 2 and (es, qs, f s) obey the transformation rule (5.4).

Proof. One possibility is, to apply 5.2.

Another possibility is to apply 5.1 locally to the domains Ωm for m = 1, 2, and then
to an equation on the surface Γ: We know from 2.8 that (5.1) with quantities as in (5.10)
is equivalent to the following properties for j = 1, . . . ,M

∂te
mj + divqmj = fmj in Ωm for m = 1, 2,

(qsj − esjvΓ)(t, x) ∈ Tx(Γt) for all (t, x) ∈ Γ,

∂Γ
t e

sj − esj κΓ•vΓ +divΓ(qsj − esjvΓ)

= f sj +
∑2

m=1(q
mj − emjvΓ)•νm on Γ.

(5.11)
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Moreover, by 2.4, the last two identities are equivalent to the distributional equations

∂t(e
sjµΓ) + div(qsjµΓ) = (f sj +

∑2
m=1(q

mj − emjvΓ)•νm)µΓ (5.12)

for j = 1, . . . ,M . This system is of the form (5.1) with

Ej = esjµΓ, Qj = qsjµΓ, F j = (f sj +
∑2

m=1(q
mj − emjvΓ)•νm)µΓ. (5.13)

We mention the following:

5.5 Remark. Objectivity of (5.1) with representation (5.10) is equivalent to objectivity
of (5.1) in Ωm for m = 1, 2 and objectivity of (5.12) for j = 1, . . . ,m (that is (5.1) with
representation (5.13)).

Proof. Assume objectivity of (5.1) in the sense of 5.4. Consider the Rankine-Hugoniot
term on the right hand side of (5.12). Let

ck := (qmk − emkvΓ)•ν for k = 1, . . . ,M,

where ν is a unit normal on Γ. The assertion follows, if for c =
(
ck

)
k=1,...,M

transformation

rule c◦Y = Zc∗ holds, where Z is the matrix of the system with representation (5.10).
Now by (5.4)

em◦Y = Zem∗, qm
i◦Y = ẊiZe

m∗ +
∑n

j=1QijZq
m∗

j

for i = 1, . . . , n, or

emk◦Y =
∑M

l=1 Zkle
ml∗, qmk

i ◦Y =
∑M

l=1 ẊiZkle
ml∗ +

∑M
l=1

∑n
j=1QijZklq

ml∗
j

for k = 1, . . . ,M and i = 1, . . . , n, or

emk◦Y =
∑M

l=1 Zkle
ml∗, qmk◦Y =

∑M
l=1 Zkle

ml∗Ẋ +
∑M

l=1 ZklQq
ml∗

for k = 1, . . . ,M . From this we infer using 5.6

ck◦Y = qmk◦Y •ν◦Y − em◦Y vΓ◦Y •ν◦Y
=

∑M
l=1

(
Zkle

ml∗Ẋ•Qν∗ + ZklQq
ml∗•Qν∗ − Zkle

ml∗(Ẋ•Qν∗ Qν∗ +QvΓ
∗)•Qν∗

)

=
∑M

l=1

(
Zklq

ml∗•ν∗ − Zkle
ml∗vΓ

∗•ν∗
)

=
∑M

l=1 Zklc
l∗.

This shows c◦Y = Zc∗.

5.6 Proposition. Let Γ be an evolving interface. Then

vΓ◦Y = Q(Id−P ∗)QTẊ +QvΓ
∗, κΓ◦Y = Qκ∗Γ,

where P ∗ at (t∗, x∗) denotes the orthogonal projection on the tangent space Tx∗(Γ
∗
t∗).

(This rules for vΓ and κΓ also hold for lower dimensional evolving surfaces.) If Γ := ∂Ω
and ν(t, x) is the outer unit normal of ∂Ωt at x, then

ν◦Y = Qν∗, vΓ◦Y = Ẋ•Qν∗ Qν∗ +QvΓ
∗.
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Proof. The normal ν(t, •) and the curvature κΓ(t, •) are defined geometrically on Γt. With
respect to the space variable observer transformations consist of translations and rotations.
This implies that ν and κΓ are objective vectors.

As we shall see, vΓ neither behaves like a velocity nor like an objective vector, its a
mixture of both. Let us use the particle approach for a general moving surface. vΓ is
characterized as a normal vector satisfying for all local curves t 7→ ξ(t) ∈ Γt the identity

vΓ(t, ξ(t))•ν = ξ̇(t)•ν (5.14)

for all normal vectors ν of Γt at ξ(t). For an observer transformation we have

ξ(t) = X(t∗, ξ∗(t∗)), t∗ − t = const ,

thus time derivative gives

ξ̇(t) = Ẋ(t∗, ξ∗(t∗)) +Q(t∗)ξ̇∗(t∗),

hence

vΓ(t, ξ(t))•ν = Ẋ(t∗, ξ∗(t∗))•ν + ξ̇∗(t∗)•(Q(t∗)Tν).

Now ν∗ :=Q(t∗)Tν is a normal vector of Γ∗t∗ at ξ∗(t∗). Using (5.14) we obtain in the new
coordinates

ξ̇∗(t∗)•(Q(t∗)Tν) = ξ̇∗(t∗)•ν∗ = vΓ
∗(t∗, ξ∗(t∗))•ν∗.

Thus for (t, x) = Y (t∗, x∗) ∈ Γ and ν = Q(t∗)ν∗ ∈ Tx(Γt)
⊥

vΓ(t, x)•ν = Ẋ(t∗, x∗)•ν + vΓ
∗(t∗, x∗)•ν∗

= Ẋ(t∗, x∗)•ν + (Q(t∗)vΓ
∗(t∗, x∗))•ν,

hence for (t, x) = Y (t∗, x∗)

vΓ(t, x)− (Ẋ(t∗, x∗) +Q(t∗)vΓ
∗(t∗, x∗)) ∈ Tx(Γt),

that is, the normal component, with respect to Γ, of vΓ − (Ẋ +QvΓ
∗)◦Y −1 vanishes, or

(Id−P ◦Y )(vΓ◦Y − Ẋ −QvΓ
∗) = 0,

where P at (t, x) denotes the orthogonal projection on Tx(Γt). Since vΓ is a normal vector
(with respect to Γ) and since Q(t∗) maps Tx∗(Γ

∗
t∗)

⊥ into Tx(Γt)
⊥, that is Id−P ◦Y =

Q(Id−P ∗)QT, this gives

vΓ◦Y = Q(Id−P ∗)QTẊ +QvΓ
∗. (5.15)

In the special case of an interface we have (Id−P ∗)(ξ) = ξ•ν∗ν∗ for ξ ∈ IRn, thus

vΓ◦Y = (QTẊ)•ν∗Qν∗ +QvΓ
∗ = Ẋ•(Qν∗)Qν∗ +QvΓ

∗. (5.16)

20



6 The entropy principle

In this section we give a short description of the entropy principle. We consider a set of
processes P consisting of solutions of a system in the time-space variable (t, x) ∈ D ⊂
IR× IRn. It is supposed to satisfy the following axiom.

Entropy principle
The “entropy principle” states, that for each process in P there is an entropy H ∈ D ′(D)
and an entropy flux Ψ = (Ψ1, . . . ,Ψn) with Ψi ∈ D ′(D) satisfying the entropy inequality

∂tH +
n∑

i=1

∂xi
Ψi ≥ 0 in D ′(D). (6.1)

Moreover, as a postulate, the entropy is an objective scalar.
We have formulated this axiom in the space of distributions, since this allows for

physical processes including quantities on a curve, or on an surface between two media.
The postulate, that the entropy is an objective scalar, is equivalent to the fact that the
weak differential equation,

∫

D

(
(∂tζ)H +

n∑
i=1

(∂xi
ζ)Ψi

)
≤ 0 for ζ ∈ C∞0 (D) with ζ ≥ 0,

transforms between observers with the rule

ζ◦Y = ζ∗

for test functions (see (5.3) with Z = 1).
In addition, what is not formulated in the above definition, it is assumed that (H,Ψ) is

“nontrivial” and has a “similar structure” as the processes in P . The exact mathematical
formulation of these properties is a difficult task and depends on the special situation.

As an example, one might consider a set of processes P consisting of solutions of a
system of distributional balance laws, that is on open sets D ⊂ IR× IRn the distributions
are Ej, Qj

i , F
j ∈ D ′(D) for j = 1, . . . ,M satisfying

∂tE
j +

n∑
i=1

∂xi
Qj

i = F j in D ′(D) for j = 1, . . . ,M. (6.2)

Let us assume that these quantities have contributions on domains and on an interface
as in (2.21). And, of course, there are constitutive relations between these quantities in
the balance laws. The “principle of equipresence” formulated by Truesdell states, that
all quantities should depend on the same variables. Then also the entropy H and its
flux Ψ should have these contributions on domains and on an interface. Therefore, we
take quantities with a structure, which is comparable to the structure of the quantities
in (6.2). However, in concrete examples the dependence of the entropy usually is more
restrictive than the dependence of the entropy flux. (In [3, Theorem 2] the entropy flux
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might contain a term involving a time derivative, although this is not true for the energy
flux.)

Often physical systems are considered in the isothermal case. The isothermal situation
can be obtained by a limit procedure, in which usually the heat flux is erased from the
system. In this limit the temperature is constant, system (6.2) does not contain an
equation for the total energy, and the entropy inequality reduces to an inequality for the
“total free energy”. Thus for a class of processes with a prescribed constant temperature
the entropy inequality reduces to a

Free energy inequality
For each process in P there is a (total) free energy F ∈ D ′(D) and a (total) free energy
flux Φ = (Φ1, . . . ,Φn) with F,Φi ∈ D ′(D) satisfying the free energy inequality

∂tF +
n∑

i=1

∂xi
Φi ≤ Gext in D ′(D) (6.3)

for all processes, where Gext ∈ D ′(D) is a free energy production term.
In contrary to the entropy the free energy is not an objective scalar, the physical type

depends on the processes in P . Since the inequality has to be objective, the quantity

G−Gext ≤ 0 with G := ∂tF +
n∑

i=1

∂xi
Φi

has to be an objective scalar.
Thus, working with a free energy inequality, one has to determine the term Gext .

This requires certain knowledge about the corresponding entropy principle behind it, and
about the transformation rule of the free energy production.

In the isothermal limit essentially one has to replace the energy flux, which usually is
denoted by q. This procedure is quite difficult, in particular for problems with interfaces.
In the standard case of one fluid one has Gext = v•f where v is the velocity of the fluid
and f the external force.

7 Some examples

In this section we give some examples, which show, that the entropy principle, respectively
the free energy principle, is valid in a broad class of physical situations. This includes

• an example from thermostatics,

• the Boltzmann equation,

• an example from molecular dynamics.

These examples stand somewhat aside our main applications in this paper, but it is
worthwhile to mention them.
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In 1909 Carathéodory [6] considered the equation

u̇0 =
∑N

i=1 f̂i(u)u̇i, (7.1)

proposing a property which, as is shown by him, is equivalent to the entropy principle in
the thermostatic case (see also [14, Section 5.1.3] and [1]).

7.1 Processes. We denote by P1 the set of all vectors u = (u0, u1, . . . , uN) whose compo-
nents are functions of time and a local solutions of (7.1). If u0, and ui, fi, i = 1, . . . , N ,
are objective scalars, then P1 is objective.

Note: One can add to each observer a rigid velocity v and set ġ = ∂tg + v•∇g for every
function g. If g is in addition an objective scalar, the fact that g is space independent,
that is ∇g = 0, is objective. Then ġ = ∂tg is the time derivative.

Proof. It is fi = f̂i(u) and since since fi and the components of u are objectve scalars, it

is obvious, that f̂i is frame indifferent. Now u depends only on time, that is

∇ui = 0.

Let u∗i be the values for another observer, since it is an objective scalar by the rule
ui◦Y = u∗i . We compute (DX)T(∇ui)◦Y = ∇u∗i . Thus also ∇u∗i = 0. We also obtain
from ui◦Y = u∗i , that (u̇i)◦Y = u̇∗i , so that the differential equation is objective. Therefore
the set P1 is objective.

In our framework the entropy principle reads as follows.

7.2 Lemma. Assume that the matrix(
f̂i ′u0(z)f̂j(z) + f̂i ′uj

(z)
)

i,j=1,...,N
(7.2)

is symmetric for z in a domain U ⊂ IR × IRN . Then there exist functions z 7→ η̂(z)
satisfying

η̂ ′u0(z)f̂i(z) + η̂ ′ui
(z) = 0 for i = 1, . . . , N (7.3)

and η̂ ′u0(z) 6= 0 for z ∈ U .

Proof. Consider the vector fields wi(z) := (f̂i(z), ei) ∈ IR1+N , where {ei ; i = 1, . . . , N}
is the canonical basis in IRN . The assumption (7.2) says that the Lie-bracket [wi, wj] :=
∂wi

wj − ∂wj
wi vanishes. Hence there exists a nontrivial function η̂ with wi(z)•∇η̂(z) = 0.

A detailed proof can be found in [1, Theorem 5.7].

7.3 Entropy principle. Assume that the matrix in (7.2) is symmetric. Then there exists
a nontrivial η = η̂(u) with η̂ as in (7.3), so that

η̇ = 0,

that is, the entropy principle for P1 is satisfied.

Note: For the rigid velocity v introduced above we have ġ = ∂tg + v•∇g = ∂tg + div(gv)
for every function g, which depends only on time. This is because ∇g = 0 and divv = 0.
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Proof. It follows that

η̇ = η ′u0u̇0 +
∑N

i=1 η ′ui
u̇i

= η ′u0

(
u̇0 −

∑N
i=1 fi u̇i

)
= 0

inserting η ′ui
from (7.3).

We mention, that for all functions u

η̇ = η ′u0

(
u̇0 −

∑N
i=1 fi u̇i

)
,

where the multiplier η ′u0 , in analogy to section 11, can be thought of the inverse absolute
temperature, comprehensible with [6], since u0 denotes the internal energy.

Our second example is Boltzmann’s equation

∂tf +
∑n

i=1 ci∂xi
f +

∑n
i=1 fi∂ci

f = r (7.4)

for a function (t, x, c) 7→ f(t, x, c) ∈ IR, where c is the velocity variable. The variables
(t, x, c) have the following transformation behaviour under an observer change:



t
x
c


 =




T (t∗)
X(t∗, x∗)

Ẋ(t∗, x∗) +Q(t∗)c∗


 , where

[
T (t∗)

X(t∗, x∗)

]
=

[
t∗ + a

Q(t∗)x∗ + b(t∗)

]
. (7.5)

Hence the variable (t, x) transform like usual and c like a velocity. The quantity f(t, x, c)
is the density of atoms at (t, x) with velocity c. The rate r(t, x, c), the collision production,
in the classical case, is given by

r(t, x, c) =

∫

IRn

∫

∂B1(0)

(
f(t, x, c− q(c− c′,k))f(t, x, c′ + q(c− c′,k))

−f(t, x, c)f(t, x, c′)
)
· w(c+ c′,k) dHn−1(k) dc′

(7.6)

with a weight function w ≥ 0 and the velocity vector

q(c− c′,k) := k•(c− c′) k.

The basis for this is that a collision of two particles conserves momentum and energy.
First let us clarify frame indifference.

7.4 Objectivity. Let P2 consist of solutions of (7.4), where f behaves like an objective
scalar, that is

f(t, x, c) = f ∗(t∗, x∗, c∗), (7.7)

if arguments transform as in (7.5). Then P2 is objective, if the f-term satisfies

f(t, x, c) = Ẍ(t∗, x∗) + 2Q̇(t∗)c∗ +Q(t∗)f∗(t∗, x∗, c∗) (7.8)

that is, transforms like a force. A constraint, which is objective for P2, is

divcf = 0. (7.9)
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Proof. The transformation of the variables (t, x, c) is given in (7.5). Then (7.7) implies
that (we omit arguments)

∂c∗f
∗ =QT∂cf,

∂x∗f
∗ =QT∂xf +

(
Dx∗Ẋ

)T

∂cf =QT∂xf + Q̇
T
∂cf,

∂t∗f
∗ = ∂tf + Ẋ•∂xf + (Ẍ + Q̇c∗)•∂cf.

We obtain

∂t∗f
∗ + c∗•∂x∗f

∗ + f∗•∂c∗f
∗

= ∂tf + (Ẋ +Qc∗)•∂xf + (Ẍ + 2Q̇c∗ +Qf∗)•∂cf.

Since c = Ẋ +Qc∗ the result follows, if f = Ẍ + 2Q̇c∗ +Qf∗, that is (7.8) is assumed.

To prove (7.9) we compute the derivative of (7.8) with respect to c∗, that is f ′cQ =
2Q̇+Qf∗′c∗ or f ′c = 2Q̇QT+Qf∗′c∗Q

T. From this it follows that trace f ′c = trace f∗′c∗ .
To prove objectivity of (7.6), we note that c − c′ as the difference of two velocities is

an objective vector. Also the collision vector k is assumed to be an objective vector.

Multiplying equation (7.4) with a function and integrating over the velocity space
c ∈ IRn leads to the following well known lemma, provided f or ζ has a certain decay at
|c| = ∞.

7.5 Lemma. Assume divcf = 0. Then for all functions (t, x, c) 7→ ζ(t, x, c)

∂t

(∫
ζf dc

)
+

∑
i

∂xi

(∫
ciζf dc

)

=

∫
ζr dc+

∫ (
∂tζ +

∑
i

ci∂xi
ζ +

∑
i

fi∂ci
ζ

)
f dc,

provided all c-integrals exist.

Proof. The only nontrivial term is

∫
ζ

n∑
i=1

fi∂ci
f dc = −

∫ n∑
i=1

∂ci
(ζfi)f dc = −

∑
i

∫
fi∂ci

ζ · f dc

since divcf = 0.

For the collision term we prove the following
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7.6 Theorem. If the collision term r satisfies (7.6), then it follows

−
∫
ζ(t, x, c) r(t, x, c) dc

=

∫

IRn

∫

IRn

∫

∂B1(0)

w(c+ c′,k)

4
·
(
ζ(t, x, c− q(c− c′,k))

+ζ(t, x, c′ + q(c− c′,k))− ζ(t, x, c)− ζ(t, x, c′)
)

·
(
f(t, x, c− q(c− c′,k))f(t, x, c′ + q(c− c′,k))

−f(t, x, c)f(t, x, c′)
)

dHn−1(k) dc′ dc .

Proof. This follows from the symmetry properties of the integral in (7.6).

With ζ = −ln (bef) one obtains the

7.7 H-Theorem. Assume divcf = 0, that is (7.9). If a, b ∈ IR and a > 0 then

η(t, x) := −
∫
a ln (bf(t, x, c)) f(t, x, c) dc,

ψi(t, x) := −
∫
a ci ln (bf(t, x, c)) f(t, x, c) dc

satisfies

∂tη(t, x) + divψ(t, x) = −
∫
a ln (bf(t, x, c)) r(t, x, c) dc ≥ 0 ,

provided r is given as in (7.6).

Proof. Since the test function is a function of f only, we compute d
df

(ln (bf)·f) = ln (bf)+

1 = ln (bef) = −ζ and therefore

∂t

(
−

∫
log (bf) f dc

)
+

∑
i

∂xi

(
−

∫
cilog (bf) f dc

)

= −
∫
∂t(ln (bf) f) dc−

∑
i

∫
ci∂xi

(ln (bf) f) dc =

∫
ζ(∂tf +

∑
i

ci∂xi
f) dc

=

∫
(ζr −

∑
i

ζfi∂ci
f) dc =

∫
ζr dc+

∑
i

∫
∂ci

(filog (bf) f) dc =

∫
ζr dc.

That this is nonnegative, is a consequence of 7.6, in fact,

−
∫

ln (bf(t, x, c)) r(t, x, c) dc

=

∫

IRn

∫

IRn

∫

∂B1(0)

1

4
ln

(
f(t, x, c− q(c− c′,k))f(t, x, c′ + q(c− c′,k))

f(t, x, c)f(t, x, c′)

)

·
(
f(t, x, c− q(c− c′,k))f(t, x, c′ + q(c− c′,k))

−f(t, x, c)f(t, x, c′)
)
· w(c+ c′,k) dHn−1(k) dc′ dc
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is nonnegative.

Hence in this case the H-Theorem plays the role of the entropy principle, and it is do
to the special form of the collision term, namely the “Stosszahl Ansatz”. Finally, we note
that the Boltzmann equation satifies the following

7.8 Remark. If divcf = 0 as in 7.7 and 7.5 then Boltzmann’s equation read

∂tf + divx(fc) + divc(f f) = r,

which is of divergence type.

As third example we consider a particle system

mαẍα(t) = fα(t)− Fα(t) for α in a locally finite set. (7.10)

Here mα > 0 as mass of the particle is a positive number, fα is an “external force”, and
Fα has the structure

Fα(t) =
∑

β Fα,β(t) with Fβ,α(t) = −Fα,β(t) , (7.11)

where later in 7.11 we will assume that for β 6= α

Fα,β(t) = ∇Vα,β(xα(t)− xβ(t)) with Vβ,α(z) = Vα,β(−z) (7.12)

and Fα,α = 0, where Vα,β are given “potentials”. This includes the Lenard-Jones potential.
It is assumed that the points xα dont meet initially. Then, since the potential z 7→ Vα,β(z)
goes to +∞ at z → 0, the points xα(t) cannot hit each other.

7.9 Objectivity. Let P3 consist of local solutions of (7.10), where xα behaves under a
change of observers by

xα(t) = X(t∗, x∗α(t∗)) for t = T (t∗). (7.13)

Moreover, let mα = m∗
α and

Fα(t) = Q(t∗)F ∗α(t∗) if t = T (t∗). (7.14)

Then P3 is objetive, if fα transforms as

fα(t) = m∗
αẊ(t∗, x∗α) + 2m∗

αQ̇(t∗)ẋ∗α(t∗) +Q(t∗)f∗α(t∗) if t = T (t∗).

We want to write this as distributional balance laws. For a curve t → x(t) let δx be
the time-space distribution, which for every time t is the Dirac measure in x(t), and if
t → y(t) is another curve, let δx,y be the time-space distributions, which for every time
t is the 1-dimensional probability measure on the straight line between x(t) and y(t),
therefore δx,y = δy,x. The definitions are

〈 ζ , δx 〉 :=

∫

IR

ζ(t, x(t)) dt,

〈 ζ , δx,y 〉 :=

∫

IR

∫ 1

0

ζ(t, (1− s)x(t) + sy(t)) ds dt.
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7.10 Conservation laws. Solutions of (7.10) satisfy the mass and momentum equation

∂t

(∑
α

mαδxα

)
+ div

(∑
α

mαẋαδxα

)
= 0

∂t

(∑
α

mαẋαδxα

)
+ div

(∑
α

mαẋα⊗ẋαδxα −
1

2

∑

α,β

Fα,β⊗(xα − xβ)δxα,xβ

)
=

∑
α

fαδxα

Proof. We compute for test functions ζ ∈ C∞0 (IR× IRn; IR) and all α

〈 ζ , ∂t (mαδxα) 〉 + 〈 ζ , div (mαẋαδxα) 〉
= −mα

∫

IR

((∂tζ)(t, xα(t)) + (∇ζ)(t, xα(t))•ẋα(t)) dt

= −mα

∫

IR

d

dt
(ζ(t, xα(t))) dt = 0 .

This implies the conservation of total mass, and is also the conservation of mass for each
particle. Then for all test functions ζ ∈ C∞0 (IR× IRn; IRn)

〈 ζ , ∂t (mαẋαδxα) 〉 = −
∫

IR

(∂tζ)(t, xα(t))•(mαẋα(t)) dt

= +
∑

i

∫

IR

ẋα,i(t)(∂iζ)(t, xα(t))•(mαẋα(t)) dt+

∫

IR

ζ(t, xα(t))• d

dt
(mαẋα(t)) dt .

This gives

〈 ζ , ∂t (mαẋαδxα) + div(mαẋα⊗ẋαδxα) 〉 =

∫

IR

ζ(t, xα(t))• d

dt
(mαẋα(t)) dt

=

∫

IR

ζ(t, xα(t))•(fα(t)− Fα(t)) dt = 〈 ζ , fαδxα 〉 − 〈 ζ , Fαδxα 〉 .

Thus we have to show that
∑

α

〈 ζ , Fαδxα 〉 =
1

2

∑

α,β

〈
Dζ , Fα,β⊗(xα − xβ)δxα,xβ

〉
.

To prove this, we use assumption (7.11) and obtain

∑
α

〈 ζ , Fαδxα 〉 =
∑

α,β

〈 ζ , Fα,βδxα 〉 =
∑

α,β

∫

IR

ζ(t, xα(t))•Fα,β(t) dt

=
∑

α,β

∫

IR

1

2
(ζ(t, xα(t))− ζ(t, xβ(t)))•Fα,β(t) dt

=
1

2

∑

α,β

∫

IR

∫ 1

0

Dζ(t, (1− s)xβ(t) + sxα(t))• (Fα,β(t)⊗(xα(t)− xβ(t))) ds dt

=
1

2

∑

α,β

〈
Dζ , Fα,β⊗(xα − xβ)δxα,xβ

〉
.
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The equation for mass and momentum are equivalent to the ODE in (7.10). There is
another identity following from (7.10), it is the identity for the free energy.

7.11 Energy identity. Define the free energy f and its flux ϕ by

f :=
∑

α

fαδxα with fα :=
mα

2
|ẋα|2 +

∑

β:β 6=α

1

2
Vα,β(xα − xβ) ,

ϕ :=
∑

α

fαẋαδxα −
∑

α,β

1

4
∇Vα,β(xα − xβ)•(ẋα + ẋβ)(xα − xβ)δxα,xβ

.

Then in the sense of distributions

∂tf + divϕ =
∑

α

ẋα•fαδxα

Proof. For the kinetic part of the free energy for any α

d

dt

(mα

2
|ẋα|2

)
= mαẋα•ẍα = ẋα•fα − ẋα•Fα ,

and for the internal part using (7.11)

d

dt

(∑

β

1

2
Vα,β(xα − xβ)

)
=

∑

β

1

2
∇Vα,β(xα − xβ)•(ẋα − ẋβ)

= ẋα•
∑

β

∇Vα,β(xα − xβ)−
∑

β

1

2
∇Vα,β(xα − xβ)•(ẋα + ẋβ)

= ẋα•Fα −
∑

β

1

2
∇Vα,β(xα − xβ)•(ẋα + ẋβ) ,

which gives

d

dt
fα = ẋα•fα −

∑

β

1

2
∇Vα,β(xα − xβ)•(ẋα + ẋβ) . (7.15)
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We use this to compute for ζ ∈ C∞0 (IR× IRn; IR)

〈 ζ , ∂t(fαδxα) + div (fαẋαδxα) 〉
= −

∫

IR

(∂tζ(t, xα(t)) +∇ζ(t, xα(t))•ẋα(t)) fα(t) dt

= −
∫

IR

d

dt
(ζ(t, xα(t))) fα(t) dt =

∫

IR

ζ(t, xα(t))
d

dt
fα(t) dt

=

∫

IR

ζ(t, xα(t))

(
ẋα(t)•fα(t)−

∑

β

1

2
∇Vα,β(xα(t)− xβ(t))•(ẋα(t) + ẋβ(t))

)
dt

= 〈 ζ , ẋα•fαδxα 〉 −
∑

β

1

2

∫

IR

ζ(t, xα(t))∇Vα,β(xα(t)− xβ(t))•(ẋα(t) + ẋβ(t)) dt

= 〈 ζ , ẋα•fαδxα 〉 −
∑

β

1

2

∫

IR

ζ(t, xα(t))Fα,β(t)•(ẋα(t) + ẋβ(t)) dt ,

(7.16)
since Fα,β = ∇Vα,β(xα−xβ). Now we sum over α, take (7.12) in consideration, and obtain

∑
α

∑

β

1

2

∫

IR

ζ(t, xα(t))Fα,β(t)•(ẋα(t) + ẋβ(t)) dt

=
∑

α,β

1

4

∫

IR

(ζ(t, xα(t))Fα,β(t) + ζ(t, xβ(t))Fβ,α(t)) •(ẋα(t) + ẋβ(t)) dt

=
∑

α,β

1

4

∫

IR

(ζ(t, xα(t))− ζ(t, xβ(t)))Fα,β(t)•(ẋα(t) + ẋβ(t)) dt

=
∑

α,β

1

4

∫

IR

∫ 1

0

∇ ζ(t, (1− s)xβ(t) + sxα(t))•(xα(t)− xβ(t))

·Fα,β(t)•(ẋα(t) + ẋβ(t)) ds dt

=

〈
∇ζ ,

∑

α,β

1

4
Fα,β•(ẋα + ẋβ)(xα − xβ)δxα,xβ

〉

(7.17)

8 Mass-momentum system

As example for objectivity of balance laws we consider a “mass-momentum” vector (%,m)
with m = (mk)k=1,...,n on a moving interface Γ (see definition 2.1). The general system of
balance laws for these quantities is of the form

∂t(%µΓ) +
n∑

i=1

∂xi
(J̃iµΓ) = τµΓ,

∂t(mkµΓ) +
n∑

i=1

∂xi
(Π̃kiµΓ) = fkµΓ for k = 1, . . . , n
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in the space of distributions. Here

J̃ =
(
J̃i

)
i=1,...,n

is the “mass flux” on Γ,

τ the “mass production” on Γ,

Π̃ =
(
Π̃ki

)
k,i=1,...,n

the “momentum flux” on Γ,

f = (fk)k=1,...,n the “momentum production” on Γ.

If Γ is an open set then we have the usual situation of a fluid or a solid.

8.1 Differential system. The vector notation of the system is

∂t(%µΓ) + div(J̃µΓ) = τµΓ,

∂t(mµΓ) + div(Π̃µΓ) = fµΓ.
(8.1)

Note: We use the convention, that the divergence of a tensor acts on its last index.

This is also of the form as in (5.1) by writing it as

∂t

([
%
m

]
µΓ

)
+

n∑
i=1

∂xi

([
J̃i

Π̃i

]
µΓ

)
=

[
τ
f

]
µΓ,

where Π̃i :=
(
Π̃ki

)
k=1,...,n

. The type of this “mass-momentum system” is defined by a

transformation rule (5.3) for test functions, which is of the form

ζ∗ = Z Tζ◦Y (
that is ζ◦Y = Z −Tζ∗

)

with matrix

Z := DY =

[
1 0
Ẋ Q

]
satisfying Z ′0 =

[
0 0
Ẍ Q̇

]
, Z ′j =

[
0 0
Ẋ ′j 0

]
. (8.2)

It follows from (5.4) that the mass-momentum system is objective, if

[
%
m

]
◦Y =

[
1 0
Ẋ Q

] [
%∗

m∗

]
,

[
J̃i

Π̃i

]
◦Y =

[
1 0
Ẋ Q

] (
Ẋi

[
%∗

m∗

]
+

n∑
j=1

Qij

[
J̃∗j
Π̃∗

j

])

[
τ
f

]
◦Y =

[
0 0
Ẍ Q̇

] [
%∗

m∗

]
+

n∑
j=1

[
0 0
Ẋ ′j 0

] [
J̃∗j
Π̃∗

j

]
+

[
1 0
Ẋ Q

] [
τ ∗

f∗

]
.

The first line of these rules are

%◦Y = %∗, J̃◦Y = %∗Ẋ +QJ̃∗, τ ◦Y = τ ∗. (8.3)
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(We remark, that these properties one also derives for the mass equation in (8.1) applying
the transformation rule (5.3) with Z = 1.) The second line of the rules are

m◦Y = %∗Ẋ +Qm∗,

Π̃◦Y = %∗Ẋ⊗Ẋ + (Qm∗)⊗Ẋ + Ẋ⊗(QJ̃∗) +QΠ̃∗QT,

f◦Y = %∗Ẍ + Q̇(m∗ + J̃∗) + τ ∗Ẋ +Qf∗.

(8.4)

In particular, % and τ are objective scalars, and m and J̃ have the same transformation
rule. Altogether, we have derived the following lemma.

8.2 Lemma. The mass-momentum equation (8.1) is objective, if %, J̃ , τ satisfy (8.3) and

m, Π̃, f satisfy (8.4).

By 2.4 the mass-momentum equation is equivalent to differential equations with alge-
braic side conditions. These are

(J̃ − %vΓ)•n = 0 for n(t, x) ∈ Tx(Γt)
⊥,

∂Γ
t %+ divΓJ̃ = τ on Γ,

(Π̃−m⊗vΓ)n = 0 for n(t, x) ∈ Tx(Γt)
⊥,

∂Γ
t m + divΓΠ̃ = f on Γ,

(8.5)

where the divergence operator divΓ acts on the second index of Π̃. The algebraic equations
are relevant only if Γ is a proper surface. Indeed, if Γ = Ω (that is d = n in definition
2.1) with an open set Ω, then Tx(Ωt)

⊥= {0}.
We now consider this case Γ = Ω and that the momentum is given by

m = %v, (8.6)

where % > 0 is assumed. It follows from the above rules, see (8.4), that

v◦Y = Ẋ +Qv∗. (8.7)

This is the transformation rule for a “velocity” (see (3.5)). Defining the “diffusive mass
flux” J and the “pressure tensor” Π by

J̃ = %v + J, Π̃ = % v⊗v + v⊗J + Π. (8.8)

Then
f◦Y = %∗(Ẍ + 2Q̇v∗) + Q̇J∗ + τ ∗Ẋ +Qf∗ (8.9)

and it follows that the following is true.

8.3 Lemma. Under the above assumptions

% and τ are objective scalars, v is a velocity,

J is an objective vector, Π is an objective tensor,
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and f transforms like a “force” in (8.9). Moreover, the equation of mass density and
momentum density

∂t%+ div(%v + J) = τ,

∂t(%v) + div(%v⊗v + v⊗J + Π) = f
(8.10)

are satisfied.

Proof. The differential equations follow from (8.1) (or (8.5) by making use of 2.4 again).
The derivation of the transformation rules is as follows. The rule for m = %v is the same
as for J̃ . Taking the difference one obtains J ◦Y = QJ∗. Moreover, the transformation
rules for % and v imply

(% v⊗v)◦Y = %∗(Ẋ +Qv∗)⊗(Ẋ +Qv∗)

= %∗Ẋ⊗Ẋ + (Qm∗)⊗Ẋ + Ẋ⊗(Q(%∗v∗)) +Q(%∗ v∗⊗v∗)QT.

Taking the difference with the transformation rule for Π̃ one obtains

(Π̃− % v⊗v)◦Y = Ẋ⊗(Q(J̃∗ − %∗v∗)) +Q(Π̃∗ − %∗ v∗⊗v∗)QT,

where J̃∗ − %∗v∗ = J∗. Moreover, for v⊗J one computes

(v⊗J)◦Y = (Ẋ +Qv∗)⊗(QJ∗) = Ẋ⊗(QJ∗) +Q(v∗⊗J∗)QT

Subtraction of both rules gives Π◦Y = QΠ∗QT.

9 Force

This section contains a discussion about the objectivity of momentum balance. The reason
for this is the following transformation rule for the force. For simplicity let us consider
the rule (which is (8.9) in the special case τ = 0 and J = 0)

f◦Y = %∗(Ẍ + 2Q̇v∗) +Qf∗ . (9.1)

This transformation rule does not allow a vanishing force for all observers. The %∗-term is
zero only for Galilean transformations, which are the linear Newtonian transformations.
It is nonzero for example for Coriolis forces, which require a nonlinear Newtonian trans-
formation. Therefore it is questionable, to which class f belongs. Let us restrict to the
case of a single fluid, for which the conservation of mass % and momentum m = %v reads,
see 8.3,

∂t%+ div(%v) = 0,

∂t(%v) + div(%v⊗v + Π) = f .
(9.2)

Whereas the class of Π is, for example, given as in section 11 or section 12, we shall discuss
the class of forces f now.

The definition of objectivity says, that the description of a class of physical processes
has to be independent of the observer. This principle, applied to the mass-momentum
system (9.2), requires that this is of the same form for all observers. By the above
considerations this is satisfied, if we define the class P of processes by all local solutions
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%, v, and f of the differential equations in (9.2), where % is an objective scalar, v a velocity
satisfying (8.7), and if f is an arbitrary vector field with the transformation rule (9.1).

It is obvious, that if we allow arbitrary vector fields f as forces, system (9.2) is a perfect
objective description with transformation rule (9.1) for f. However, such a class may not
correspond to a real physical situation. Therefore, let us intent to describe a class of
processes, where f is restricted to a certain subclass of vector fields and, of course, the
rule (9.1) still should be valid.

First we deal with the v∗-term in (9.1). Let f(1) := f − 2%Av with a matrix quantity
A. Then (9.1) is equivalent to

f(1)◦Y = %∗(Ẍ − 2A◦Y Ẋ) + 2%∗(Q̇−A◦Y Q+QA∗)v∗ +Qf ∗(1) .

The v∗-term vanishes, if we impose the following transformation rule

A◦Y = Q̇QT+QA∗QT (9.3)

for A (the same rule as for a velocity gradient in 10.4). Moreover, inserting the time
derivatives of X = Qx∗ + b we obtain that

f(1)◦Y = %∗(b̈− 2A◦Y ḃ) + %∗(Q̈− 2A◦Y Q̇)x∗ +Qf ∗(1).

Next we deal with the x∗-term. Let f(2) := f(1) − %Cx with a matrix quantity C. Then
the rule for f(1) is equivalent to

f(2)◦Y = %∗(b̈− 2A◦Y ḃ−C◦Y b) + %∗(Q̈− 2A◦Y Q̇−C◦Y Q+QC∗)x∗ +Qf ∗(2).

The x∗-term vanishes, if we impose the following transformation rule

C◦Y = Q̈QT− 2A◦Y Q̇QT+QC∗QT

for C. Using the identity Q̇QT = −QQ̇T
and inserting (9.3) this rule becomes

C◦Y = Q̈QT+ 2Q̇Q̇
T
+ 2QA∗QT+QC∗QT (9.4)

and we have

f(2)◦Y = %∗(b̈− 2A◦Y ḃ−C◦Y b) +Qf ∗(2).

Setting f0 := f(2) − %a with a vector quantity a this is equivalent to the fact that f0 is an
objective vector, if a satisfies

a◦Y = b̈− 2A◦Y ḃ−C◦Y b +Qa∗.

Inserting (9.3) and (9.4) this becomes

a◦Y = b̈− 2(Q̇+QA∗)(QTb)
·− (Q̈+QC∗)QTb +Qa∗. (9.5)

Thus we obtain
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9.1 Proposition. Let

f = %(2Av + Cx+ a) + f0 (9.6)

with an objective vector f0 and transformation rules (9.3), (9.4), and (9.5) for (A,C, a).
Then f is a force with transformation rule (9.1), and the identity (9.6) is objective, that
is the same for all observers. We call A “Coriolis matrix”, C “Euler-centrifugal matrix”,
and a “acceleration vector” (see also the terms in 9.2).

So far we have not introduced any constraint to the force term, since for a fixed
observer the vector field a can be any function in time and space. We now introduce
constraints for f.

9.2 Proposition. Consider a class of forces f as in (9.6) with

A +AT = 0, ∇A = 0, C = ∂tA−A2, ∇a = 0.

Then this line of constraints is objective. In particular, the quantities A, C, and a depend
only on time. Moreover, there exist “inertial frames”, that is frames with A = 0, C = 0,
and a = 0.

Meaning: The contributions in f have the following meaning (see [14, (2.50)]):

Av Coriolis acceleration,

∂tA x Euler acceleration,

−A2x centrifugal acceleration,

a acceleration of translation.

Proof. If A∗ is antisymmetric, then transformation rule (9.3) gives that also A is anti-
symmetric. Hence A+AT = 0 is an objective equation. Moreover, all coefficients in (9.3),
(9.4), and (9.5) depend only on time. This implies that ∇A = 0 is an objective equation,
that the two equations ∇A = 0, ∇C = 0 are objective, and that the three equations
∇A = 0, ∇C = 0, ∇a = 0 also are objective.

Now assume the constraint ∇A = 0 for the quantity A. It follows from (9.3), that
B := ∂tA−A2 has the transformation rule

B◦Y = Q̈QT+ 2Q̇Q̇
T
+ 2QA∗QT+QB∗QT.

Together with (9.3) this gives, that C−B is an objective tensor. Hence the two equations
∇A = 0, C−B = 0 are objective.

If (A, a) with these properties are given, we want to determine all observer transfor-
mations t = t∗, x = Q(t∗)x∗ + b(t∗), for which (A∗, a∗) = 0. Now, A∗ = 0 in (9.3) if and
only if Q satisfies Q̇ = AQ. Since A is antisymmetric, this can be solved in the class of
orthogonal transformations. Then, since C∗ = 0, (9.5) with a∗ = 0 is equivalent to

b̈ = a + 2Q̇
(
QTb

)•
+ Q̈QTb,

which gives b in terms of a and Q.
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Finally let us mention the following: In real physical situation it should be possible to
check the validity of the structure of f in 9.1 with the constraints in 9.2. Since A, C, and
a are functions of time only, enough measurements at different space points or of different
observers are needed.

However, this requires a full knowledge of the “internal force” f0. In every laboratory
frame, solar frame, or galactic frame the influence of gravitational forces is present. The
objective vector f0 is then given by a constitutive relation f0 = −%∇φ, where φ is the
gravitational potential. It might be, that its effect is below the error of measurements.

10 Mass-momentum-energy system

The general system of balance laws for mass %, momentum m = (mk)k=1,...,n, and “(total)
energy” e on a moving interface Γ is of the form

∂t(%µΓ) +
∑n

i=1 ∂xi
(J̃iµΓ) = rµΓ,

∂t(mkµΓ) +
∑n

i=1 ∂xi
(Π̃kiµΓ) = fkµΓ for k = 1, . . . , n

∂t(eµΓ) +
∑n

i=1 ∂xi
(q̃iµΓ) = gµΓ .

This holds in the space of distributions. In the case, that Γ is an open set (that is d = n
in definition 2.1), we are in the classical case. In addition to the quantities explained in
section 8 here q̃ = (q̃i)i=1,...,n is the “energy flux” and g the “energy production”.

10.1 Differential system. The vector notation of this system is

∂t(%µΓ) + div(J̃µΓ) = rµΓ,

∂t(mµΓ) + div(Π̃µΓ) = fµΓ,

∂t(eµΓ) + div(q̃µΓ) = gµΓ

with the convention, that the divergence of a tensor acts on its last index.

The fact, that the equations of mass and momentum are complemented by one equa-
tion, the equation for the energy, is called “first law of thermodynamics”. Compare this
with other models, like Grad’s 13-moment theory, or the 84-moments theory, which are
treated in [15, Chapter 9,10]. The mass-momentum-energy system 10.1 is of the form as
in (5.1) by writing it as

∂t






%
m
e


µΓ


 +

∑n
i=1 ∂xi






J̃i

Π̃i

q̃i


µΓ


 =



τ
f
g


µΓ,

which Π̃i :=
(
Π̃ki

)
k=1,...,n

as in section 8. The type of this system is defined by transfor-

mation rule (5.3) for test functions, where the matrix is

Z :=




1 0 0
Ẋ Q 0

1
2
|Ẋ|2 Ẋ

T
Q 1


 (10.1)
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with

Z ′0 =




0 0 0
Ẍ Q̇ 0

Ẍ•Ẋ Ẍ
T
Q+ Ẋ

T
Q̇ 0


 , Z ′j =




0 0 0
Ẋ ′j 0 0

Ẋ•Ẋ ′j Ẋ ′j
T
Q 0




for j = 1, . . . , n. Then 10.1 is objective, if (5.4) is satisfied, which here reads


%
m
e


◦Y = Z



%∗

m∗

e∗


 ,



J̃i

Π̃i

q̃i


◦Y = ẊiZ



%∗

m∗

e∗


 +

∑n
j=1QijZ



J̃∗j
Π̃∗

j

q̃∗j


 for i = 1, . . . , n,



r
f
g


◦Y = Z ′0



%∗

m∗

e∗


 +

∑n
j=1 Z ′j



J̃∗j
Π̃∗

j

q̃∗j


 + Z



r∗

f∗

g∗


 .

Due to the structure of the matrix Z, the properties of the quantities in the mass and
momentum part follow as in section 8. That is (8.3) and (8.4) is satisfied and also the
results about the the structure of the force in section 9 can be applied here. Therefore,
we have to evaluate the energy part of this transformation rule. The first identity gives

e◦Y = 1
2
|Ẋ|2%∗ + Ẋ•(Qm∗) + e∗. (10.2)

The energy part of the second identity is

q̃i◦Y = Ẋi

(
1
2
|Ẋ|2%∗ + Ẋ

T
Qm∗ + e∗

)

+
∑n

j=1Qij

(
1
2
|Ẋ|2J̃∗j + Ẋ

T
QΠ̃∗

j + q̃∗j
)
,

which in vector notation is

q̃◦Y = (%∗
2
|Ẋ|2 + Ẋ

T
Qm∗ + e∗)Ẋ

+1
2
|Ẋ|2QJ̃∗ +(QΠ̃∗QT)

T
Ẋ +Qq̃∗.

(10.3)

The energy part of the third identity is

g◦Y = Ẍ•Ẋ%∗ + (Ẍ
T
Q+ Ẋ

T
Q̇)m∗

+
∑n

j=1

(
Ẋ•Ẋ ′jJ̃

∗
j + Ẋ ′j

T
QΠ̃∗

j

)

+1
2
|Ẋ|2r∗ + Ẋ

T
Qf∗ + g∗,

that is
g◦Y = Ẍ•(%∗Ẋ +Qm∗) + (Q̇

T
Ẋ)•(m∗ + J̃∗) + (QTQ̇)•Π̃∗

+1
2
|Ẋ|2r∗ + Ẋ•Qf∗ + g∗.

(10.4)

Altogether, we have derived the following lemma.
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10.2 Lemma. The mass-momentum-energy system 10.1 is objective, if %, J̃ , r satisfy
(8.3), if m, Π̃, f satisfy (8.4), and if e, q̃, and g satisfy (10.2), (10.3), (10.4).

By 2.4 the system 10.1 is equivalent to the following differential equations and algebraic
side conditions

(J̃ − %vΓ)•n = 0 for n(t, x) ∈ Tx(Γt)
⊥,

∂Γ
t %+ divΓJ̃ = r on Γ,

(Π̃−m⊗vΓ)n = 0 for n(t, x) ∈ Tx(Γt)
⊥,

∂Γ
t m + divΓΠ̃ = f on Γ,

(q̃ − evΓ)•n = 0 for n(t, x) ∈ Tx(Γt)
⊥,

∂Γ
t e+ divΓq̃ = g on Γ.

(10.5)

Here the algebraic equations are relevant only if Γ is a proper surface.
We now consider, as in section 8, the case that Γ = Ω with an open set Ω ⊂ IR× IRn.

We assume that % > 0 and consider a momentum of the form

m = %v (10.6)

with a velocity v, that is satisfying (8.7). Define J , Π as in (8.8) and the “internal energy”
ε by

J̃ = %v + J, Π̃ = % v⊗v + v⊗J + Π,

e = ε+ %
2
|v|2, q̃ = ev + 1

2
|v|2J +ΠTv + q,

(10.7)

where q is the “heat flux”, a definition which indicates the role of q, however in general q
may contain also other terms. Further, let f̃ and g̃ be defined by

f̃ = f− rv , g̃ = g + r
2
|v|2 − v•f . (10.8)

Then we obtain

10.3 Lemma. With these definitions the mass-momentum-energy system 10.1 on a space-
time domain reads

∂t%+ div(%v + J) = r,

∂t(%v) + div(v⊗(%v + J) + Π) = f,

∂t(ε+ %
2
|v|2) + div(εv + 1

2
|v|2(%v + J) +ΠTv + q) = g.

(10.9)

Here

%, ε, r are objective scalars, v is a velocity (satisfying (8.7)),

J , q are objective vectors, Π is an objective tensor,

f̃◦Y = %∗(Ẍ + 2Q̇v∗) + Q̇J∗ +Qf̃
∗
,

g̃◦Y = (QTQ̇)•Π∗A+ g̃∗ ,

(10.10)

where f̃ and g̃ are defined as in (10.8).
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If the pressure tensor Π is assumed to be symmetric, the last identity means, that g̃
is an objective scalar. This symmetry is connected to the moment of momentum.

Proof. For the properties of %, v, J , r, Π, and f see section 8. The transformation rule for
e in (10.2) now is

e◦Y = %∗
2
|Ẋ|2 + %∗Ẋ•(Qv∗) + e∗. (10.11)

For the kinetic energy %
2
|v|2 one computes

(%
2
|v|2)◦Y = %∗

2
|Ẋ +Qv∗|2

= %∗
2
|Ẋ|2 + %∗Ẋ•(Qv∗) + %∗

2
|v∗|2,

Taking the difference with (10.11) one obtains ε◦Y = ε∗.
Next, insert m∗, J̃∗, and Π̃∗ in rule (10.3). Since

(QΠ̃∗QT)
T
Ẋ = %∗Q(v∗⊗v∗)QTẊ +Q(J∗⊗v∗)QTẊ +(QΠ∗QT)

T
Ẋ

= Ẋ•Qv∗(%∗Qv∗ +QJ∗) + (QΠ∗QT)
T
Ẋ,

this gives
q̃◦Y = (%∗

2
|Ẋ|2 + %∗Ẋ•Qv∗ + e∗)Ẋ

+(1
2
|Ẋ|2 + Ẋ•Qv∗)(%∗Qv∗ +QJ∗)

+(QΠ∗QT)
T
Ẋ +Qq̃∗.

= (%∗
2
|Ẋ|2 + %∗Ẋ•Qv∗)(Ẋ +Qv∗) + e∗Ẋ

+(1
2
|Ẋ|2 + Ẋ•Qv∗)QJ∗ +(QΠ∗QT)

T
Ẋ +Qq̃∗.

(10.12)

From known rules one computes

(ΠTv)◦Y = (QΠ∗QT)
T
(Ẋ +Qv∗)

= (QΠ∗QT)
T
Ẋ +Q(Π∗Tv∗),

(10.13)

(1
2
|v|2J)◦Y = (1

2
|Ẋ|2 + Ẋ•Qv∗ + 1

2
|v∗|2)QJ∗

= (1
2
|Ẋ|2 + Ẋ•Qv∗)QJ∗ +Q(1

2
|v∗|2J∗),

(10.14)

(ev)◦Y = (%∗
2
|Ẋ|2 + %∗Ẋ•(Qv∗) + e∗)(Ẋ +Qv∗)

= (%∗
2
|Ẋ|2 + %∗Ẋ•(Qv∗))(Ẋ +Qv∗) + e∗Ẋ +Q(e∗v∗).

(10.15)

Subtraction of (10.13), (10.14), (10.15) from (10.12) gives that q◦Y = Qq∗.
Finally, inserting m∗ = %∗v∗ in rule (10.4), this rule becomes

g◦Y = %∗Ẍ•(Ẋ +Qv∗) + Ẋ•Q̇(%∗v∗ + J̃∗) + (QTQ̇)•Π̃∗

+ r∗
2
|Ẋ|2 + Ẋ•Qf∗ + g∗.

(10.16)

Now

( r
2
|v|2)◦Y = r∗

2
|Ẋ|2 + r∗Ẋ•(Qv∗) + r∗

2
|v∗|2, (10.17)
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and from (8.7), (8.9)

(v•f)◦Y = (Ẋ +Qv∗)•(%∗(Ẍ + 2Q̇v∗) + Q̇J∗ + r∗Ẋ +Qf∗)

= (Ẋ +Qv∗)•(%∗(Ẍ + 2Q̇v∗) + Q̇J∗ + r∗Ẋ) + Ẋ•Qf∗ + v∗•f∗.
(10.18)

Combining (10.16), (10.17), (10.18) one obtains

g̃◦Y = Ẋ•Q̇(%∗v∗ + J̃∗)− (Ẋ +Qv∗)•(2%∗Q̇v∗ + Q̇J∗)

+(QTQ̇)•Π̃∗ + g̃∗

= Ẋ•Q̇(J̃∗ − %∗v∗ − J∗)

+(QTQ̇)•(Π̃∗ − 2%∗v∗⊗v∗ − v∗⊗J∗) + g̃∗.

Inserting the identities for J̃∗, Π̃∗ (see (10.7)) one obtains

g̃◦Y = (QTQ̇)•(Π∗ − %∗v∗⊗v∗) + g̃∗

= (QTQ̇)•(Π∗ − %∗v∗⊗v∗)A+ g̃∗ = (QTQ̇)•Π∗A+ g̃∗.

Finally, subtracting (rv)◦Y = rẊ +Q(r∗v∗) from (8.9) one obtains

f̃◦Y = %∗(Ẍ + 2Q̇v∗) + Q̇J∗ +Qf̃
∗
.

Concerning the transformation rule for g̃ we apply the following statement.

10.4 Proposition. If v is a velocity, then the velocity gradient Dv = (∂jvi)i,j=1,...,n satis-
fies

(Dv)◦Y = Q̇QT+QDv∗QT.

It follows, that

(Dv)S◦Y = Q(Dv∗)SQT, (Dv)A◦Y = Q̇QT+Q(Dv∗)AQT,

that is (Dv)S, the symmetric part of Dv, is an objective tensor.

Proof. The transformation rule for velocities is

vi◦Y = Ẋi +
∑n

j=1Qijv
∗
j

for i = 1, . . . , n. Computing space derivatives of this identity for l = 1, . . . , n one obtains

∑n
k=1 vi ′k◦Y Qkl = Q̇il +

∑n
j=1Qijv

∗
j ′l,

hence

vi ′k◦Y =
∑n

l=1 Q̇ilQkl +
∑n

j,l=1QijQklv
∗
j ′l,

40



which is the required transformation rule. The antisymmetry of Q̇QT implies the assertion
for (Dv)S.

It follows, that

(Dv•ΠA)◦Y = (Q̇QT+QDv∗QT)•(QΠ∗QT)
A

= (Q̇QT+QDv∗QT)•(QΠ∗AQT)

= (QTQ̇)•Π∗A+ Dv∗•Π∗A.

Therefore, Dv•ΠA obeys the same transformation rule as g̃, which implies that

g̃ −Dv•ΠA = g + r
2
|v|2 − v•f−Dv•ΠA is an objective scalar. (10.19)

11 Viscous fluids

Here we give a short report on the entropy principle for a single viscous fluid. We consider
conservation of mass, momentum, and energy as in (10.9), that is

∂t%+ div(%v) = 0,

∂t(%v) + div(% v⊗v + Π) = f,

∂te+ div(ev +ΠTv + q) = g.

(11.1)

Here we have assumed that J = 0 and r = 0, and we have the constraint % > 0, which is
invariant under observer transformations. We consider f as an external force, containing
for example Coriolis forces, so that section 9 can be applied. We also assume that Π is
symmetric,

Π = ΠT, (11.2)

a property, which implies the conservation of moment of momentum. With the “inner
energy” ε, given by

e = ε+
%

2
|v|2, (11.3)

system (11.1) is equivalent to

(∂t + v•∇)%+ %divv = 0,

%(∂t + v•∇)v + divΠ = f,

(∂t + v•∇)ε+ divq + Dv•(ε Id +Π) = g − v•f.
(11.4)

By section 10, objectivity of (11.1) means the following properties:

%, ε are objective scalars, v is a velocity (as in (8.7)),

q is an objective vector, Π a symmetric objective tensor,

f◦Y = %∗(Ẍ + 2Q̇v∗) +Qf∗, (g − v•f)◦Y = g∗ − v∗•f∗.
(11.5)

We now state the entropy principle.
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11.1 Entropy principle. We assume that there is an entropy η and an entropy flux ψ,
such that

h := ∂tη + divψ ≥ 0

in the domain of the process. In addition there are constitutive relations for (η, ψ), where
we consider a dependence of η and ψ on the quantities in the the balance laws.

As a postulate η is an objective scalar, thus with h = ∂tη+divψ we derive (from (5.3)
with Z = 1 for this single equation)

η, h are objective scalars, ψ − ηv is an objective vector. (11.6)

As constitutive relation for η we assume

11.2 Proposition. Let η depend on (%, v, ε), then objectivity implies, that

η = η̂(%, ε).

Proof. If η = η̂(%, v, ε), then objectivity of η̂ implies η∗ = η̂(%∗, v∗, ε∗). By (11.5) and
(11.6) this gives

η̂(%∗, Ẋ +Qv∗, ε∗) = η̂(%∗, v∗, ε∗).

This implies, that η̂ is independent of the velocity.

If η depends on (%, ε) as in 11.2, then one computes

∂tη = η ′%∂t%+ η ′ε∂tε,

and a similar expression one obtains for any first order derivative. Inserting this in the
differential equations (11.4) one derives

h = ∂tη + divψ

= (∂t + v•∇)η + ηdivv + div(ψ − ηv)

= η ′%(∂t + v•∇)%+ η ′ε(∂t + v•∇)ε+ ηdivv + div(ψ − ηv)

= η ′ε(g − v•f)
+Dv• ((η − η ′%%− η ′εε) Id−η ′εΠ)

−η ′εdivq + div(ψ − ηv).

Now we split Π into a diagonal part and a rest (here for a moment without any meaning),

Π = p Id−S, (11.7)

we use the standard computation involving the heat flux,

η ′εdivq = div(η ′εq)−∇η ′ε•q,
and we introduce a rest term in the entropy flux,

ψ = ηv + η ′εq + ψ0.
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Inserting this, we obtain for the entropy production

h = η ′ε(g − v•f)
+ divv · (η − η ′%%− η ′ε(ε+ p))︸ ︷︷ ︸

divv-term

+ η ′εDv•S + (∇η ′ε)•q︸ ︷︷ ︸
remainder

+ divψ0︸ ︷︷ ︸
flux term

.

(11.8)

Now we assume that ψ0 = 0. We will later justify this identity by the computations in
11.7. Thus setting ψ0 = 0 we obtain

11.3 Theorem. Assume a constitutive relation for η as in 11.2 and for the entropy flux
set

ψ = ηv + η ′εq.

Assume that g = v•f and Π = p Id−S. Then the entropy inequality is satisfied, if

(1) Gibbs relation. η = %η ′% + (ε+ p)η ′ε,

(2) Dissipation. η ′εDv•S +∇η ′ε•q ≥ 0.

This follows from (11.8). Moreover, the entropy identity reads

h = ∂tη + divψ = η ′εDv•S +∇η ′ε•q ≥ 0. (11.9)

In concrete cases both terms on the right-hand side are nonnegative. That is, the splitting
in (11.7) is so, that the part S is driven by the first derivatives Dv of v to assure that
η ′εDv•S is nonnegative, and the rest, which must be a multiple of the identity, satisfies
Gibbs relation.

In theorem 11.3 we have shown that the entropy is fulfilled, if certain assumptions,
among them 11.3(1) and 11.3(2), are satisfied. Now we want to take the entropy principle
as assumption and draw conclusions from it, among them 11.3(1) and 11.3(2). The
corresponding theorem will be 11.7.

For a Navier-Stokes-Fourier fluid, that is a heat conducting viscous fluid, see [14,
Chapter 6], the class of physical processes P consists of local smooth solutions (%, v, ε, f)
of (11.1), where Π and q are given by constitutive relations. Therefore one considers the
density %, the velocity v, and the internal energy ε as independent variables. We note that
at this stage the temperature is not yet defined. Moreover, we consider f as an external
quantity. And one specifies for Π and q a pointwise dependence on the values and first
space derivatives of %, v, ε:

11.4 Assumption (Solution property). We assume constitutive equations

Π = Π̂(%, v, ε,∇%,Dv,∇ε),
q = q̂(%, v, ε,∇%,Dv,∇ε).

(11.10)
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and that Π̂ and q̂ are C1-functions. For the entropy and entropy flux we assume similar
equations

η = η̂(%, v, ε), ψ = ψ̂(%, v, ε,∇%,Dv,∇ε). (11.11)

For an open and dense set of values (%, v, ε,∇%,Dv,∇ε) the following holds: If there is a
polynomial (%, v, ε, f), which satisfies (11.1) at a point, then there is a solution of (11.1)
in a neighbourhood of this point, which coincides with the polynomial at this point in all
terms which occur in (11.1).

In this assumption the notion of polynomials is a trick to say that a set of values
(%, v, ε,∇%,Dv,∇ε) together with (∂t%, ∂tv, ∂tε,D

2%,D2v,D2ε) exist, which solve the dif-
ferentiated version (see (15.3)) of the system (11.1) at a point.

The following holds.

11.5 Proposition. If Π and q are given by constitutive functions as in (11.10), and if
they are (affine) linear in the variables representing derivatives, then objectivity implies,
for n ≥ 3, that Π and q are of the form

Π = p Id−S, p = p̂(%, ε),

S = â(%, ε)(Dv)S+ b̂(%, ε)div(v) Id,

q = ĉ(%, ε)∇ε+ d̂(%, ε)∇%
with objective scalars p, a, b, c, and d.

We mention that for the identity for S the symmetry of Π (see (11.2)) has been used.
Also we mention that in the following proof the assumption on objectivity is meant for
solutions (%, v, ε, f) in P . Then for an open and dense set of values (%, v, ε,∇%,Dv,∇ε)
by assumption 11.4 we have a solution in P , hence we can argue as in the following proof,
which gives the conclusion. Since Π̂ and q̂ are continously differentiable, the conclusion
holds for all values.

Proof for q. We have the identity

q = q̂(%, v, ε,∇%,Dv,∇ε).
Then, since the function q̂ is objective, also for another observer

q∗ = q̂(%∗, v∗, ε∗,∇%∗,Dv∗,∇ε∗).
Since q ◦Y = Qq∗, we obtain, applying above transformation rules, which follow from
(11.5) and which imply, for example, (∇%)◦Y = Q∇%∗ and the same for ∇ε, that

q̂(%∗, Ẋ +Qv∗, ε∗, Q∇%∗, Q̇QT+QDv∗QT, Q∇ε∗)
= Qq̂(%∗, v∗, ε∗,∇%∗,Dv∗,∇ε∗).

For a given (t∗, x∗) we can choose an observer transformation with Q(t∗) = Id, and such
that Ẋ(t∗) is a given vector and Q̇(t∗)QT(t∗) a given antisymmetric matrix. This implies
(see the above explanation), that q̂ is independent of the v-variables and the antisymmetric
part of the Dv-variable. Thus with a new constitutive function
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q = q̂(%, ε,∇%,(Dv)S,∇ε)
and since (Dv)S is an objective tensor (see 10.4), the above identity becomes

q̂(%∗, ε∗, Q∇%∗, Q(Dv∗)SQT, Q∇ε∗)
= Qq̂(%∗, ε∗,∇%∗,(Dv∗)S,∇ε∗).

For constant solutions (%∗, v∗, ε∗) this gives

q̂(%∗, ε∗, 0, 0, 0) = Qq̂(%∗, ε∗, 0, 0, 0).

Since Q(t∗) can be any orthogonal matrix, this implies

q̂(%∗, ε∗, 0, 0, 0) = 0. (11.12)

We reduce further objectivity properties to constant objective tensors. Using (11.12) and
since q̂ is (affine) linear in the variables ∂j%, ∂jε, and ∂jv, we have a representation

qi =
n∑

j=1

âij(%, ε)∂jε+
n∑

j=1

b̂ij(%, ε)∂j%

+
n∑

k,l=1

ĉikl(%, ε)
∂kvl + ∂lvk

2

with coefficients aij, bij, and cijk, where we can assume that cikl = cilk for all i, k, l =
1, . . . , n. Using that %, ε are objective scalars, that q, ∇%, ∇ε are objective vectors, and
that (Dv)S is an objective tensor, the identity q◦Y = Qq∗, that is

qi◦Y =
n∑

i=1

Qiiq
∗
i
,

we obtain
n∑

j,j=1

âij(%
∗, ε∗)Qjj∂jε

∗ +
n∑

j,j=1

b̂ij(%
∗, ε∗)Qjj∂j%

∗

+
n∑

k,l,k,l=1

ĉikl(%
∗, ε∗)QkkQll

∂kv
∗
l

+ ∂lv
∗
k

2

=
n∑

i,j=1

Qiiâij(%
∗, ε∗)∂jε

∗ +
n∑

i,j=1

Qiib̂ij(%
∗, ε∗)∂j%

∗

+
n∑

i,k,l=1

Qiiĉikl(%
∗, ε∗)

∂kv
∗
l

+ ∂lv
∗
k

2
.

Now fix (t∗, x∗). By the solution property 11.4 (see the above explanation) there is a
process (%∗, v∗, ε∗) with given values and space derivatives at (t∗, x∗). Thus fixing %∗(t∗, x∗)
and ε∗(t∗, x∗), varying over all space derivatives at (t∗0, x

∗
0), we see that the following

identities have to be satisfied at (t∗0, x
∗
0):
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∑n
j=1 âij(%

∗, ε∗)Qjj =
∑n

i=1Qiiâij(%
∗, ε∗) for all i, j,

∑n
j=1 b̂ij(%

∗, ε∗)Qjj =
∑n

i=1Qiib̂ij(%
∗, ε∗) for all i, j,

∑n
k,l=1 ĉikl(%

∗, ε∗)QkkQll =
∑n

i=1Qiiĉikl(%
∗, ε∗) for all i, k, l.

Note, that for the last identity we have used the symmetry of cikl in k and l. The first
identity is equivalent to

âij(%
∗, ε∗) =

∑n
i,j=1QiiQjj âij(%

∗, ε∗) for all i, j

and all orthogonal matrices Q with positive determinant. This says, that (for fixed values
of %∗(t∗, x∗) and ε∗(t∗, x∗)) the tensor (âij(%

∗, ε∗))i,j=1,...,n behaves like a constant objective
tensor, which implies that it is a multiple of the identity. The same follows for the b-term.
The third identity is equivalent to

ĉikl(%
∗, ε∗) =

∑n
i,k,l=1QiiQkkQllĉikl(%

∗, ε∗) for all i, k, l,

and all orthogonal matrices Q with positive determinant. This says, that (for fixed val-
ues of %∗(t∗, x∗) and ε∗(t∗, x∗)) the 3-tensor (ĉikl(%

∗, ε∗))i,k,l=1,...,n behaves like a constant
objective 3-tensor, which is symmetric in the last two indices. This implies that it has to
vanish. Thus the assertion for q is proved.

Proof for Π. For Π̂ one obtains independence of v and the antisymmetric part of Dv in
the same manner as for q. Then

Π̂(%∗, ε∗, 0, 0, 0) = QΠ̂(%∗, ε∗, 0, 0, 0)QT

for all orthogonal matrices Q. This implies that Π̂(%∗, ε∗, 0, 0, 0) (for fixed values of %∗ and
ε∗) is a constant objective tensor, and therefore, for n ≥ 3, is a multiple of the identity,
that is,

Π̂(%∗, ε∗, 0, 0, 0) = p̂(%∗, ε∗) Id .

Then Π = p Id−S and S has a representation

Sij =
n∑

k=1

âijk(%, ε)∂kε+
n∑

k=1

b̂ijk(%, ε)∂k%

+
n∑

k,l=1

ĉijkl(%, ε)
∂kvl + ∂lvk

2
,

where we can assume that cijkl = cijlk for all i, j, k, l = 1, . . . , n. Now Π and then also S
is an objective tensor, that is

Sij◦Y =
n∑

i,j=1

QiiQjjS
∗
i,j
.

This leads, with the above notation, to the identities
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∑n
k=1 aijkQkk =

∑n
i,j=1QiiQjjaijk for all i, j, k,

∑n
k=1 bijkQkk =

∑n
i,j=1QiiQjjbijk for all i, j, k,

∑n
k,l=1 cijklQkkQll =

∑n
i,j=1QiiQjjcijkl for all i, j, k, l.

Again we rewrite this so that we have Q-terms only on the right-hand side. This gives,
that (aijk)i,j,k=1,...,n behaves like a constant objective 3-tensor. This implies that it is
antisymmetric in each pair of indices (for n = 3, for n ≥ 4 it follows that aijk = 0),
hence aijk + ajik = 0. Therefore this term gives no contribution to the symmetric part
of S. The same follows for the b-term. The third identity gives that (cijkl)i,j,k,l=1,...,n is
a constant objective 4-tensor, which is symmetric in the last two indices. Since S, by
(11.2), is symmetric, this implies that the symmetric part with respect to the first two
indices is of the form

cijkl =
a

2
(δk,iδl,j + δl,iδk,j) + bδk,lδi,j

with two scalars a, b (see section 16).

Further we obtain the following

11.6 Lemma. Let (η, ψ) be as in 11.4. Then objectivity implies that

η = η̂(%, ε), ψ = ηv + η ′εq + ψ0,

ψ0 = ψ̂0(%, ε,∇%, (Dv)S,∇ε)
and ψ̂0(%, ε, 0, 0, 0) = 0.

Proof. Apply similar arguments as above.

Now we draw conclusion from the entropy principle and we are ready to formulate the
“necessity theorem”.

11.7 Theorem. Let 11.4 be satisfied, in particular

η = η̂(%, v, ε),

and assume 11.5 and let g = v•f. Assume that the entropy principle holds. Then

ψ = ηv + η ′εq + ψ0,

where divψ0 = 0 (ψ0 is of the form (11.17)), and

(1) Gibbs relation. η = %η ′% + (ε+ p)η ′ε,

(2) Dissipation. η ′εDv•S ≥ 0, and ∇η ′ε•q ≥ 0.

For the equation of the entropy flux ψ see also theorem 11.9. As a result in theorem
11.7 we have the identity

0 ≤ h = ∂tη + div(ηv + η ′εq)

= η ′εDv•S +∇η ′ε•q.
(11.13)
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Proof. By the objectivity of η we know η = η̂(%, ε) (see 11.6). Then we get from 11.5 that
for the entropy production, see (11.8),

0 ≤ h = ∂tη + div (ηv + η ′εq + ψ0)

= divv · (η − η ′%%− η ′ε(ε+ p))

+η ′εDv•S + (∇η ′ε)•q + divψ0.

Making use of ψ0 = ψ̂0(%, ε,∇%,Dv,∇ε) and that ψ0 depends only on the symmetric part
of Dv, that is ψ0 ′∂jvk

= ψ0 ′∂kvj
, the formula becomes

0 ≤ h = divv · (η − η ′%%− η ′ε(ε+ p)) + η ′εDv•Ŝ(%, ε,Dv S)

+
∑

j(η ′εεqj + ψ0j ′ε)∂jε+
∑

j(η ′ε%qj + ψ0j ′%)∂j%

+
∑

ij ψ0i ′∂jε∂i∂jε+
∑

ij ψ0i ′∂j%∂i∂j%+
∑

ijk ψ0i ′∂jvk
∂i∂jvk.

(11.14)

We know, that this is nonnegative for all physical processes. That is h ≥ 0 for functions
(%, v, ε, f), which satisfy the equations (11.1) with g = v•f. We want to conclude that an
algebraic version of this is satisfied. Now, by assumption 11.4 there exists a solution of
system (11.1) in a neighbourhood of some point (t, x) with given values

(%, v, ε, ∂t%,∇%, ∂tv,Dv, ∂tε,∇ε,D2%,D2v,D2ε), (11.15)

provided the values at this point belong to a dense set and satisfy the algebraic version of
system (11.1) (which is the differentiated version obtained in a similar way as the function
h in (11.14) above). Since for all processes the entropy principle is satisfied, the inequality
h ≥ 0 holds in this neighbourhood and therefore (11.14) in the above point. Since the
involved functions are C1, we obtain that this conclusion is true for all arguments.

Therefore the algebraic version (if we write the arguments as in (11.15)) of this conclu-
sion is satisfied: That is, the term in (11.14) is nonnegative, if the differentiated version of
system (11.1) is fulfilled. Since each equation of the algebraic form of (11.1) has an explicit
time derivative of (∂t%, ∂tv, ∂tε), whereas the form (11.14) contains no time derivative, we
conclude that (11.14) has to be satisfied for all arguments.

We now draw conclusions from this algebraic version. Let us first assume that divψ0 =
0. Then the last two lines in (11.14) vanish, hence the entropy production (11.14) has a

term quadratic in (Dv)S, the term containing Ŝ, a term quadratic in (∇%,∇ε), the term
containing q̂, and a term linear in div v. Then it follows that the coefficient of the linear
term has to vanish, which is Gibb’s relation, and that the two quadratic terms have to be
nonnegative, which are the two dissipative terms in the theorem.

Therefore in order to show the theorem, we have to show that divψ0 = 0. The
expression (11.14) is explicit linear in the arguments (D2%,D2v,D2ε). Dividing these
arguments by a small positive δ, multiplying the inequality with δ, and letting δ → 0, we
conclude, that the coefficients (taking the symmetry into account) have to vanish, that is

ψ0i ′∂jε + ψ0j ′∂iε
= 0, ψ0i ′∂j% + ψ0j ′∂i%

= 0, ψ0i ′∂jvk
+ ψ0j ′∂ivk

= 0. (11.16)

Denote by

C =
(
ψ0i ′∂j1

ε∂j2
ε

)
i,j1,j2=1,...,n
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the 3-matrix C, which is antisymmetric in (i, j1) and symmetric in (i, j2). It follows that
C = 0 by 11.8, hence

ψ0i ′∂j1
ε∂j2

ε = 0.

In the same way ψ0i ′∂j1
%∂j2

% = 0 and ψ0i ′∂j1
vk∂j1

vk
= 0. Now denote by

C =
(
ψ0i ′∂jvk

)
i,j,k=1,...,n

the 3-matrix C, which is antisymmetric in (i, j) and symmetric in (j, k). Consequently
C = 0 by 11.8, which means that ψ0 is independent of Dv.

All this implies, since ψ̂0(%, ε, 0, 0, 0) = 0, that

ψ0l =
∑

j

c1lj∂j%+
∑

j

c2lj∂jε+
∑
ij

dlij∂i%∂jε

with constitutive relations c1lj = ĉ1lj(%, ε) and the same for c2lj and dlij. Since ψ0 is an

objective vector, the matrix C =
(
cmlj

)
lj

satisfies C = QCQT for all rotations Q satisfying

detQ = 1. Moreover, by the above identity it is antisymmetric, that is C+C T = 0. Since
n ≥ 3, it follows that C = 0. Hence it remains the quadratic term

ψ0l =
∑

ij dlij∂i%∂jε,

dlij = d̂lij(%, ε) antisymmetric in (l, i) and (l, j).
(11.17)

From this it follows that divψ0 = 0.

11.8 Lemma. Suppose C = (Cijk)i,j,k=1,...,N is a 3-matrix, which is antisymmetric in the
first two indices, and symmetric in the last two indices. Then C = 0.

Proof. It is
Clkj = −Cklj = −Ckjl = Cjkl,

Clkj = Cljk = −Cjlk = −Cjkl.

Hence Cjkl = 0.

In the above proof we used the so called “algebraic entropy principle”, which is a
general procedure, and therefore can be applied under quite general circumstances. Now,
under an additional assumption, we can show that ψ0 = 0.

11.9 Theorem. If in addition to theorem 11.7

qi ′∂j% = qj ′∂i%, qi ′∂jε = qj ′∂iε,

ψi ′∂j% = ψj ′∂i%, ψi ′∂jε = ψj ′∂iε,

then ψ = ηv + η ′εq, that is ψ0 = 0.

Proof. We have to show that (11.17) implies that ψ0 = 0. It follows, that the assumptions
are also valid for ψ0,

ψ0i ′∂j% = ψ0j ′∂i%
, ψ0i ′∂jε = ψ0j ′∂iε

.

Then (11.16) implies that ψ0i ′∂j% = 0 and ψ0i ′∂jε = 0, so that ψ0 = 0 by (11.17).
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12 Elastic solids

The physical formulation of every material starts in the physical domain. Therefore, for
a single body, the basis for the formulation is the conservation of mass, momentum, and
energy (as in (10.9) with J = 0, see also (11.1)), that is

∂t%+ div(%v) = r,

∂t(%v) + div(%v⊗v + Π) = f,

∂te+ div(ev +ΠTv + q) = g

(12.1)

in a time-space domain Ω, see (12.3). Objectivity of the system (12.1) requires by section
10.3 the following:

%, ε, r are objective scalars, e = ε+ %
2
|v|2,

v is a velocity (see (8.7)),

q is an objective vector, Π an objective tensor,

(12.2)

and f is an external force and g an energy source (satisfying the identities in (10.10)). In
contrast to fluids the velocity v is not an independent variable, is it given by a map

φ : ]t1, t2[×B → IRn, (t, x) 7→ (t, x) = τ(t, x) := (t, φ(t, x)),

Ωt = {x ∈ IRn ; (t, x) ∈ Ω} = {φ(t, x) ; x ∈ B}, (12.3)

via the formula
v(t, x) = ∂tφ(t, x) for x = φ(t, x). (12.4)

Here B is the “unperturbed” body, so that v can be considered as the velocity of a “single
particle”. Is is assumed that x 7→ φ(t, x) is an isomorphism with

det Dxφ > 0.

Formula (12.4) is consistent with the definition of a velocity, since the transformation
formula of φ between observers is

φ(t, x) = X(t∗, φ∗(t∗, x)) for t = T (t∗). (12.5)

Here T denotes the time transformation for Newtonian observer transformation. We
remark that φ(T (t∗), x) = X(t∗, φ∗(t∗, x)) implies, since T (t∗) is only a shift in time,

∂tφ(T (t∗), x) = Ẋ(t∗, φ∗(t∗, x)) +Q(t∗)∂t∗φ
∗(t∗, x).

This is consistent with the transformation rule for a velocity.
The inverse of φ is denoted by

x = ξ(t, x) for x = φ(t, x). (12.6)

Then equation (12.4) can be considered as a constitutive equation for v, which in terms
of ξ instead of φ is formulated in the following lemma.
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12.1 Lemma. The coordinates ξi, i = 1, . . . , n, are objective scalars and we have the
constitutive equation v = − (Dxξ)

−1∂tξ for the velocity.

Proof. The fact, that ξi is an objective scalar, that is ξi◦Y = ξ∗i for i = 1, . . . , n, or

x = ξ(t, x) = ξ∗(t∗, x∗) for (t, x) = Y (t∗, x∗), (12.7)

is equivalent to (12.5). The identity x = ξ(t, φ(t, x)) implies

0 = ∂tξ(t, φ(t, x)) + Dxξ(t, φ(t, x))∂tφ(t, x),

so that (12.4) is equivalent to 0 = ∂tξ + (Dxξ)v.

We obtain the following theorem, where we refer to [13] for readers, who want to have
a comparison with existing literature.

12.2 Theorem. With the transformation in (12.3) we define

V := ∂tφ = (∂tφi)i the velocity,

F := Dφ =
(
∂xj

φi

)
ij

the deformation gradient,

J := detF > 0 the determinant,

P := J · (−Π◦τ)F −T the (first) Piola-Kirchhoff stress tensor,

% := J · (%◦τ) the reference density,

e := J · (e◦τ) the reference energy,

q := J ·F −1(q◦τ) the reference heat flux.

Then the differential equations (12.1) in reference coordinates read

∂t% = J · (r◦τ),
∂t(%V )− divP = J · (f◦τ),
∂te+ div(−P TV + q) = J · (g◦τ).

(12.8)

Proof. The first equation in (12.1) in its weak form reads
∫

Ω

(∂tη · %+∇η•(%v) + η · r) dLn+1 = 0

for η ∈ C∞0 (Ω; IR). We transform this into an integral over ]t1, t2[×B = τ−1(Ω). Defining

η̃(t, x) = η(t, φ(t, x)), τ(t, x) = (t, φ(t, x)),

we obtain
∂tη̃ = (∂tη)◦τ + (∇η)◦τ•∂tφ = (∂tη + v•∇η)◦τ,

and the weak equation becomes, since J = det Dxφ =
∣∣ det D(t,x)τ

∣∣,
∫ t2

t1

∫

B
(∂tη̃ · J%◦τ + η̃ · Jr◦τ) dLn dL1 = 0.
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In its strong version this is

∂t(J%◦τ) = Jr◦τ.
The second equation in (12.1) is for ζ ∈ C∞0 (Ω; IRn)

∫

Ω

(
∂tζ•(%v) +

n∑
i,j=1

∂jζi · (%vivj + Πij) + ζ•f
)

dLn+1 = 0.

Transforming this via ζ̃(t, x) = ζ(t, φ(t, x)), so that

∂tζ̃ = (∂tζ + v•∇ζ)◦τ, Dxζ̃ = (Dxζ)◦τDxφ,

we see that the above integral equals

=

∫

Ω

(
(∂tζ +

n∑
j=1

vj∂jζ)•(%v) + (Dxζ)•Π + ζ•f
)

dLn+1

=

∫ t2

t1

∫

B

(
∂tζ̃•(J(%v)◦τ) + J · (Dxζ̃ (Dxφ)−1)•(Π◦τ) + ζ̃•(Jf◦τ)

)
dLn dL1

=

∫ t2

t1

∫

B

(
∂tζ̃•(J(%◦τ)V ) + (Dxζ̃)•(J(Π◦τ) (Dxφ)−T) + ζ̃•(Jf◦τ)

)
dLn dL1.

In its strong version this is

∂t(J(%◦τ)V ) + divx(J(Π◦τ) (Dxφ)−T) = Jf◦τ.

The energy equation in (12.1) is for η ∈ C∞0 (Ω; IR)

∫

Ω

(
∂tη · e+∇η•(ev +ΠTv + q) + η · g) dLn+1 = 0.

For η̃, defined as above, this becomes

∫ t2

t1

∫

B

(
∂tη̃ · J(e◦τ) + J · ((Dφ)−T∇η̃)•((Π◦τ)TV + q◦τ) + η̃ · (Jg◦τ)

)
dLn dL1 = 0.

Since

J ·
(
(Dφ)−T∇η̃

)
•
(
(Π◦τ)TV + q◦τ

)

= J · ∇η̃•
(
(Dφ)−1(Π◦τ)TV + (Dφ)−1(q◦τ)

)

= J · ∇η̃•
((

(Π◦τ) (Dφ)−T
)T

V + (Dφ)−1(q◦τ)
)

= ∇η̃• (−P TV + q
)
,

the result follows.
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Equivalently, system (12.1) can be written as (see (11.4))

∂t%+ div(%v) = r,

%(∂tv + v•∇v) + divΠ = f̃,

∂tε+ div(εv + q) + Dv•Π = g̃,

(12.9)

where f̃ and g̃ are defined in (10.8). The last differential equation we compute in reference
coordinates, where

r = J · (r◦τ), f = J · (f◦τ), g = J · (g̃◦τ)

12.3 Theorem. System (12.8) is equivalent to

∂t% = r,

∂t(%V )− divP = f,

∂tε+ divq = (DV )•P + g.

(12.10)

Here

e = ε+
%

2
|V |2, ε = J · (ε◦τ).

Remark: Introducing

S := F −1P the second Piola-Kirchhoff stress tensor,

D :=
1

2

(
F TDV + (DV )TF

)
the material rate of deformation tensor,

then, if Π is symmetric, (DV )•P = D•S.

The first two equations of (12.8), resp. (12.9), are equivalent to the mass and mo-
mentum equation. If r = 0, then the first equation of (12.10) reduces to a given function
% = %̂(x). Consequently the second and third equation are equations for (V, ε).

Proof. Similar as in the previous proof we obtain from the last equation in (12.9)

∂tε+ divxq = J(Dxv•(−Π))◦τ + J(g◦τ).

For the first term on the right hand side we compute

J(Dxv•(−Π))◦τ = ((Dxv)◦τ)•(−J(Π◦τ)) = ((Dxv)◦τDxφ)•(−J(Π◦τ) (Dxφ)−T),

so that we can use the definition of the first Piola-Kirchhoff stress tensor, moreover,

((Dxv)◦τDxφ)(t, x) = (Dxv)(t, φ(t, x))Dxφ(t, x) = Dx (v(t, φ(t, x))) = DxV (t, x).
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Proof of Remark. The identity (DV )•P = (DV )•(FS) = (F TDV )•S holds in any case.
If Π is symmetric, then also S = J F −1(−Π ◦ τ)F −T is symmetric. It follows that
(F TDV )•S = D•S.

We now state the entropy principle.

12.4 Entropy principle. We assume that there is an entropy η and an entropy flux ψ,
such that

h := ∂tη + divψ ≥ 0

for all solutions of the problem with given constitutive relations. In reference coordinates

η := J · η◦τ, ψ := J ·F −1(ψ − ηv)◦τ,

this is equivalent to
h := ∂tη + divψ ≥ 0.

As in the above proofs it follows that h = J · h◦τ . It is assumed, that the entropy
equation transforms like an objective scalar, that is η is an objective scalar and ψ − ηv
an objective vector. To specify the entropy principle, one has to prescribe the physical
processes one has in mind. We consider here the most elementary case of a constitutive
dependence on (ξ, ε,Dξ), or equivalently, on (x, ε,Dφ) in reference coordinates.

12.5 Lemma. Let us assume a constitutive relation η = η̂(ξ, ε,Dξ). This is equivalent to
η = η̂(x, ε, F ). Then

η ′ε = η ′ε◦τ, η ′ε = η ′ε◦τ−1,

η ′F = J ·
(
(η − εη ′ε) Id− (Dξ)Tη ′Dξ

)
◦τ F −T ,

η ′Dξ = det Dξ ·
(
(η − εη ′ε) Id−F Tη

F

)
◦τ−1 (Dξ)−T .

Proof. Since ξ◦τ(t, x) = x one gets (Dξ)◦τ = F −1, and since J = detF one obtains

η = J · η◦τ = J · η̂ (
x, 1

J
ε,F −1

)
,

hence
η̂(x, ε, F ) := detF · η̂ (

x, 1
det F

ε,F −1
)
. (12.11)

On the other hand, if η̂ is given, define

η̂(ξ, ε,M) := detM · η̂ (
ξ, 1

det M
ε,M −1

)
.

From these representations one derives the equations for the derivatives.

With this constitutive relation for the entropy we have the following

12.6 Theorem. Assume that
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(1) η = η̂(ξ, ε,Dξ) and ψ = ηv+η ′εq+ψ0. Then for solutions of the differential equations

h = ∂tη + divψ

= η ′εg̃ + divψ0 + (∇η ′ε)•q
+

(
(η − εη ′ε) Id− (Dξ)Tη ′Dξ − η ′εΠ

)
•Dv.

(2) η = η̂(x, ε, F ) and ψ = η ′εq + ψ̃0. Then for solutions of the differential equations

h = ∂tη + divψ

= η ′εJ · (g̃◦τ) + div ψ̃0 + (∇η ′ε)•q
+(η ′εP + η ′F )•DV .

The two statements in this theorem, the formulation 12.6(2) in reference coordinates
and 12.6(1) in the physical domain, are equivalent statements. This can be shown by
transforming the corresponding terms, and therefore only one of the following proofs is
necessary.

Proof of (1). Since η = η̂(ξ, ε,Dξ) we compute

h = ∂tη + divψ = ∂tη + div(ηv + η ′εq + ψ0)

= (∂t + v•∇)η + ηdiv v + div(η ′εq + ψ0)

= η ′ξ(∂t + v•∇)ξ + η ′ε(∂t + v•∇)ε+ η ′Dξ• ((∂t + v•∇)Dξ)

+ηdiv v + div(η ′εq + ψ0) .

We use the last equation in (12.9) to replace

(∂t + v•∇)ε = g̃ − div q − εdiv v − Π•Dv.
Besides this there are two identities in connection with the reference coordinates

0 = ∂tξ + v•∇ξ,
0 = ∂tDξ + v•∇Dξ + DξDv.

Using this the entropy production becomes

h = η ′ε(g̃ − div q − εdiv v − Π•Dv)
−η ′Dξ• (DξDv)

+ηdiv v + div(η ′εq + ψ0)

= η ′εg̃ + divψ0︸ ︷︷ ︸
flux term

+ (∇η ′ε)•q︸ ︷︷ ︸
remainder

+ ((η − εη ′ε) Id− (Dξ)Tη ′Dξ − η ′εΠ)•Dv︸ ︷︷ ︸
Dv-term

,

where we have used that η ′Dξ•(DξDv) = ((Dξ)Tη ′Dξ)•Dv.
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Proof of (2). Since η = η̂(x, ε, F ) we obtain

h = ∂tη + divψ = ∂tη + div
(
η ′εq + ψ̃0

)

= η ′ε∂tε+ η ′F •∂tF + div
(
η ′εq + ψ̃0

)
.

We use the last equation in (12.10) to replace

∂tε = J · (g̃◦τ)− div q + P•DV .

Using that ∂tF = DV the formula for h becomes

h = η ′εJ · (g̃◦τ) + div ψ̃0︸ ︷︷ ︸
flux term

+ (∇η ′ε)•q︸ ︷︷ ︸
remainder

+ (η ′εP + η ′F )•DV
︸ ︷︷ ︸

linear in DV

.

The following statements will be formulated only in reference coordinates. Similar as
in 12.6 an equivalent formulation in physical coordinates is always possible. We begin
with a sufficient condition for the entropy principle.

12.7 Theorem. Let r = 0 and g = 0 (that is r = 0 and g = v•f), and assume that

η = η̂(x, ε, F ), ψ = η ′εq.

Then the entropy principle is satisfied, if

η ′εP + η ′F = 0 ,

h = (∇η ′ε)•q ≥ 0 .
(12.12)

Proof. From the assumptions on the rates and on ψ we obtain that the entropy production
in reference coordinates, by the previous theorem, is

h = (∇η ′ε)•q + (η ′εP + η ′F )•DV .

The second term on the right-hand side vanishes by assumption. Then the entropy prin-
ciple reduces to h = (∇η ′ε)•q ≥ 0.

In this theorem we have shown that the entropy principle is fulfilled, if certain assump-
tions, among them (12.12), are satisfied. Now we want to assume the entropy principle
and draw conclusions from it, among them (12.12). For this we need the following as-
sumptions.
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12.8 Assumption (Solution property). We assume constitutive relations

P = P̂ (x, ε, F,∇ε,DF ) ,

q = q̂(x, ε, F,∇ε,DF ) ,
(12.13)

where P̂ and q̂ are C1-functions, and similar for the entropy and entropy flux

η = η̂(x, ε, F ) , ψ = ψ̂(x, ε, F,∇ε,DF ) . (12.14)

For an open and dense set of values (x, ε, F,∇ε,DF ) the following holds: If there is a
polynomial (ξ, ε, f), which solves (12.1) at a point and coincides with the given values,
then there is a solution of (12.1) in a neighbourhood of this point, which coincides with
the polynomial at this point in all terms which occur in (12.1).

Since ∂kFij = ∂kjφi = ∂jFik for all i, j, k = 1, . . . , n, we assume that functions, which
depend on DFij = (∂kjφi)k=1,...,n, are symmetric in (k, j). For example, we have the
identity

ψ ′∂kFij
= ψ ′∂jFik

. (12.15)

With this assumption we can formulate our theorem. For the heat flux and the entropy
flux we assume in addition the Onsager’s type assumption

ql ′∂kFij
= qk ′∂lFij

, ql ′∂kε = qk ′∂lε,

ψ̃l ′∂kFij
= ψ̃k ′∂lFij

, ψ̃l ′∂kε = ψ̃k ′∂lε.
(12.16)

12.9 Theorem. Let us assume that r = 0 and g = v•f. Further, let us assume the
constitutive relations in (12.13) and (12.14), in particular,

η = η̂(x, ε, F ) ,

and ψ̂(x, ε, F, 0, 0) = 0, and the assumption in 12.8. Then, if (12.16) is satisfied and if the
entropy prinicple holds, we conclude

η ′εP = −η ′F ,

(∇η ′ε)•q ≥ 0 ,

and q̂(x, ε, F, 0, 0) = 0. In addition, the entropy flux is given by

ψ = η ′εq.

The residual entropy inequality is

0 ≤ h = (∇η ′ε)•q

The theorem can also be formulated in the physical domain, where Π, q, and ψ depend
on (ξ, ε, ∂tξ,Dξ,∇ε,D2ξ), and the entropy η depends only on (ξ, ε,Dξ). Of course, in
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addition η is an objective scalar, q and ψ−ηv are objective vectors, and Π is an objective
tensor. What are the consequences for the quantities in reference coordinates? The
connection between q and q is q◦τ = J −1Fq, and for another observer q∗◦τ ∗ = J∗ −1F ∗q∗.
Then the identity q◦Y = Qq∗, the transformation rule for the heat flux, implies, since
τ(t, x) = Y ◦τ ∗(t∗, x) for t = T (t∗),

1

J(t, x)
F (t, x)q(t, x) = q◦τ(t, x) = Q(t∗)q∗◦τ ∗(t∗, x)

=
1

J∗(t∗, x)
Q(t∗)F ∗(t∗, x)q∗(t∗, x) .

Since τ(t, x) = Y ◦τ ∗(t∗, x) implies F (t, x) = Q(t∗)F ∗(t∗, x) and J(t, x) = J∗(t∗, x), one
obtains

q(t, x) = q∗(t∗, x),

In the same way ψ(t, x) = ψ∗(t∗, x), and similar P (t, x) = Q(t∗)P ∗(t∗, x). The objectivity
of q̂, for example, then implies

q̂(x, ε∗, QF ∗,∇ε∗, QDF ∗) = q̂(x, ε∗, F ∗,∇ε∗,DF ∗)
We do not use these identities in the following proof.

Proof. With ψ̃0 := ψ − η ′εq we obtain from 12.6(2) for all solutions of the differential

equations, since η depends only on (x, ε, F ),

0 ≤ h = div ψ̃0 + (∇η ′ε)•q + (η ′εP + η ′F )•DV

=
∑

i

(
η ′εxi

q + ψ̃0 ′xi

)
•ei +

(
η ′εεq + ψ̃0 ′ε

)
•∇ε

+
∑

ij

(
η ′εFij

q + ψ̃0 ′Fij

)
•∇Fij + (η ′εP + η ′F )•DV

+
∑

k ψ̃0 ′∂kε•∇∂kε+
∑

ijk ψ̃0 ′∂kFij
•∇∂kFij .

(12.17)

We want to conclude that an algebraic version of this inequality is satisfied. Now q, P
and ψ̃0 depend on (x, ε, F,∇ε,DF ) and η on (x, ε, F ). For a dense set of arguments,
there exists a solution of the differential equations (12.8), or equivalently (12.10). For this
solution the entropy inequality is satisfied, that is, (12.17) holds. At a point (t, x), the
arguments

(ε, V, F, ∂tε,∇ε, ∂tV,DF,D
2ε,D2F ) (12.18)

of this solution satisfy the algebraic version of (12.10) (which is the differentiated version
obtained in a similar way as the function h in (12.17) above). Therefore at this point
(12.17) is satisfied. Since the involved functions are C1, we obtain the conclusion for all
arguments.

Now each equation of the algebraic form of (12.10) has an explicit time derivative of

(∂t%, ∂tV, ∂tε) = (∂t%, ∂
2
t φ, ∂tε),

whereas the form (12.17) does not contain these time derivatives. We conclude that
(12.17) has to be satisfied for all arguments.
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We now draw conclusions from this algebraic version. The expression (12.17) is explicit
linear in the arguments

(DV,D2ε,D2F ) = (D∂tφ,D
2ε,D3φ). (12.19)

Dividing the arguments in (12.19) by a small positive δ, multiplying (12.17) by δ, and
letting δ → 0, we conclude, that the coefficients have to vanish. This gives

η ′εP + η ′F = 0, (12.20)

and (taking the symmetry, see (12.15), into account)

ψ̃0l ′∂kFij
+ ψ̃0k ′∂lFij

+ ψ̃0j ′∂lFik
= 0,

ψ̃0l ′∂kε + ψ̃0k ′∂lε
= 0.

(12.21)

Using (12.16) we derive that

ψ̃0l ′∂kFij
= 0 , ψ̃0l ′∂kε = 0

and therefore ψ̃0 is independent of ∂kFij and ∂kε. (See the arguments in 12.10 for a

general ψ̃0.) Then it follows from the assumption ψ̂(x, ε, F, 0, 0) = 0 that ψ̃0 = 0. Thus
the entropy inequality reduces to 0 ≤ h = (∇η ′ε)•q.

12.10 Lemma. Without the assumption (12.16) one has for the remainder ψ̃0 := ψ−η ′εq
the following statements.

(1) ψ̃0 = ψ̂0(x, ε, F,∇ε,DF ) is a polynomial in (∇ε,∇Fi,j).

(2) An example for ψ̃0 is

c · (∑i ∂2kϕi∂kϕi e1 −
∑

i ∂1kϕi∂kϕi e2) ,

with the property divψ̃0 = 0, if c = const .

Proof (1). That ψ̃0 is linear in∇ε follows from the second line in (12.21) (see the arguments
following (11.16)). Using the first line in (12.21) one gets

0 = ψ̃0j ′∂jFij∂l1
Fil2

= (ψ̃0j ′∂l1
Fil2

) ′∂jFij

= −(ψ̃0l1 ′∂l2
Fij

+ ψ̃0l2 ′∂l1
Fij

) ′∂jFij

= −(ψ̃0l1 ′∂jFij
) ′∂l2

Fij
− (ψ̃0l2 ′∂jFij

) ′∂l1
Fij

= 2(ψ̃0j ′∂l1
Fij

) ′∂l2
Fij

+ 2(ψ̃0j ′∂l2
Fij

) ′∂l1
Fij

= 4ψ̃0j ′∂l2
Fij∂l1

Fij
,
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and therefore
0 = (ψ̃0j ′∂l2

Fij∂l1
Fij

) ′∂k1
Fik2

= (ψ̃0j ′∂k1
Fik2

) ′∂l2
Fij∂l1

Fij

= −(ψ̃0k1
′∂k2

Fij
+ ψ̃0k2

′∂k1
Fij

) ′∂l2
Fij∂l1

Fij

= −ψ̃0k1
′∂k2

Fij∂l2
Fij∂l1

Fij
+ ψ̃0k2

′∂k1
Fij∂l2

Fij∂l1
Fij
.

Then C = (Ck1k2l2l1)k1,k2,l2
with

Ck1k2l2l1 := ψ̃0k1
′∂k2

Fij∂l2
Fij∂l1

Fij
(12.22)

is antisymmetric in (k1, k2) while symmetric in (k2, l2), and therefore C = 0 by lemma
11.8, that is

ψ̃0k ′∂l3
Fij∂l2

Fij∂l1
Fij

= 0

or in words, ψ̃0 is quadratic in each vector variable ∇Fij for i, j = 1, . . . , n, and multi-
quadratic as a function of all these variables.

13 Navier-Stokes-Korteweg equation

The evaluation of the entropy principle depends on the number of arguments, on which
the quantities of the equations depend. Therefore it also depends on the arguments of the
entropy. Too many and too few arguments may lead to unsatisfactory results. We will
give here an example (see [7]). In contrast to section 11, where the entropy η = η̂(%, ε)
has been a function of % and ε, here the entropy depends in addition on ∇%, that is
η = η̂(%, ε,∇%), see 13.1.

Again we consider the equations for mass, momentum, and energy as in (11.1), that
is

∂t%+ div(%v) = 0,

∂t(%v) + div(% v⊗v + Π) = f,

∂te+ div(ev +ΠTv + q) = v•f, e = ε+ %
2
|v|2 ,

(13.1)

where ε is the internal energy. Further, we assume that

ΠT = Π, (13.2)

which implies the conservation of moment of momentum. Then, as shown in section 10,
objectivity of (13.1) means

%, ε are objective scalars, v is a velocity,

q is an objective vector, Π a symmetric objective tensor,

f is a force, g is an energy production.

(13.3)

As shown in section 11, system (13.1) is equivalent to

(∂t + v•∇)%+ %divv = 0,

%(∂t + v•∇)v + divΠ = f,

(∂t + v•∇)ε+ divq + Dv•(ε Id +Π) = 0.

(13.4)
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In contrast to section 11 the entropy is allowed to depend on ∇%.

13.1 Entropy principle. As processes we consider the solutions of (13.1) with certain
constitutive relations. The entropy principle associates to each process an entropy η and
an entropy flux ψ satisfying

∂tη + divψ ≥ 0 (13.5)

in the domain of the process. Here we postulate, that

η = η̂(%, v, ε,∇%), ψ = ψ̂(%, v, ε,∇%,Dv,∇ε). (13.6)

where η is an objective scalar.

A consequent application of Truesdell’s principle of equipresence would mean, that
one takes an entropy η of the form η = η̂(%, v, ε,∇%,Dv,∇ε). We will not discuss this
here, and therefore stay with (13.6).

13.2 Lemma. Objectivity implies with a new function η̂, that

η = η̂(%, ε,
1

2
|∇%|2).

Remark: The third variable we denote by s, so (%, ε, s) 7→ η̂(%, ε, s). A statement about
the dependence on (%, ε,∇%) with the property, that η depends only on the modulus of
∇%, would also be adequate.

Proof. Let η̂ be the function in (13.6), which is the same for all observers. Since the
entropy is an objective scalar, we derive

η̂(%∗, Ẋ +Qv∗, ε∗,QT∇%∗) = η◦Y = η∗ = η̂(%∗, v∗, ε∗,∇%∗).

Since Ẋ can be chosen independent of Q, the function η̂ can not depend on v∗. Then η̂ has
the same value for ∇%∗ and QT∇%∗. Since Q can be chosen arbitrarily as an orthogonal
transformation with detQ = 1, the function η̂ can only depend on the modulus |∇%∗|.
Thus with a new function η∗ = η̂(%∗, ε∗, 1

2
|∇%∗|2).

Assume for the entropy the dependence in 13.2. We compute the first derivatives

∂tη = η ′%∂t%+
∑

i

η ′s∂i%∂t∂i%+ η ′ε∂tε,

∂jη = η ′%∂j%+
∑

i

η ′s∂i%∂j∂i%+ η ′ε∂jε,

and therefore, with ġ := ∂tg + v•∇g for any function g,

η̇ = η ′%%̇+
∑

i

η ′s∂i% ˙(∂i%) + η ′εε̇.
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Since
˙(∂i%) = ∂i%̇+ v•∇∂i%− ∂i(v•∇%) = ∂i%̇− (∂iv)•∇%, (13.7)

we get

∑
i

η ′s∂i% ˙(∂i%) =
∑

i

η ′s∂i%∂i%̇−
∑
i,j

η ′s∂i%∂ivj∂j%

= −
∑

i

∂i(η ′s∂i%) · %̇+
∑

i

∂i(%̇η ′s∂i%)−
∑
i,j

η ′s∂i%∂ivj∂j%.

Defining the first variation of η with respect to % by

δη

δ%
:= η ′% − div(η ′s∇%) , (13.8)

we obtain

η̇ =
δη

δ%
%̇+ η ′εε̇+ div(%̇η ′s∇%)− (∇%⊗(η ′s∇%)) •Dv.

Now we compute the entropy production h = ∂tη + divψ, which for any functions %, v, ε
can be written as in [14, section 1.3.1.2], that is as a linear combination of the underlying
equations. However, due to the fact that the entropy depends on the gradient of the mass
density, there is an additional term %̇η ′s∇% in the entropy flux. A similar term also arises
in connection with phase transition problems (see [3]). Thus we obtain for the entropy
production using the above computations

h := ∂tη + divψ = η̇ + ηdiv v + div(ψ − ηv)

=
δη

δ%
%̇+ η ′εε̇+ div(ψ − ηv + %̇η ′s∇%) + (η Id−∇%⊗(η ′s∇%)) •Dv

= η ′ε(g − v•f) + div(ψ − ηv − η ′εq + %̇η ′s∇%)︸ ︷︷ ︸
flux term

+ ∇η ′ε•q︸ ︷︷ ︸
heat term

+ Dv•
(

(η − %
δη

δ%
− εη ′ε) Id−η ′εΠ−∇%⊗(η ′s∇%)

)

︸ ︷︷ ︸
at least linear in Dv

.

As sufficient condition for the entropy principle 13.1 we obtain the

13.3 Theorem. Assume that η has the assumption in 13.2, hence

η = η̂(%, ε, 1
2
|∇%|2)

and that the entropy flux is

ψ = ηv + η ′εq − %̇η ′s∇%, %̇ = (∂t + v•∇)%.

Then the entropy inequality is satisfied, if g = v•f, η ′ε 6= 0 and if p and S satisfy

(1) Pressure tensor. Π = p Id− 1
η ′ε
∇%⊗(η ′s∇%)− S,
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(2) Gibbs relation. η = % δη
δ%

+ (ε+ p)η ′ε,

(3) Dissipation. η ′εDv•S +∇η ′ε•q ≥ 0.

Proof. This follows from the above formula, where one chooses S̃ so, that

S̃ = (η − % δη
δ%
− εη ′ε) Id−η ′εΠ−∇%⊗(η ′s∇%). (13.9)

With this and the assumptions in the theorem

h = ∇η ′ε•q + Dv•S̃.

We split (13.9) into two equations by defining an scalar p̃ by

p̃ := η − %
δη

δ%
− εη ′ε,

then the formula (13.9) reads

η ′εΠ = p̃ Id−S̃ −∇%⊗(η ′s∇%).

Now p and S are so that p̃ Id−S̃ = η ′ε(p Id−S).

A necessary condition for the entropy principle 13.1 can also be obtained, but will not
be presented in this paper. For the form of p and Π see also the computation following
14.4, where constitutive relations are written in terms of the free energy instead of the
entropy. One obtains (without arguments)

p = % · (f0 ′% − θdiv(1
θ
f0 ′∇%)

)− f0, θ = 1
η ′ε

Π = p Id +∇%× f0 ′∇% − S
(13.10)

Often the Navier-Stokes-Korteweg equation, in the isothermal situation, is written down
in the form

∂t%+ div(%v) = 0,

∂t(%v) + div(% v⊗v + p1 Id−S) = δ%∇∆%.

A proof is contained in section 14, where we introduce the free energy as a function of
absolute temperature.

14 Absolute temperature

One of the basic computations in thermodynamics is the definition of temperature and
easy properties about it. Often the properties look more familiar, if we introduce as
independent variable the absolute temperature θ instead of the internal energy ε. A
quantity containing the temperature is the “free energy”, defined by

f = e− θη. (14.1)
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The temperature, by postulate, is an objective scalar, and therefore the free energy trans-
forms like the (total) energy. The above formula is the case for fluids in section 11 and
13 and for solids in section 12.

We consider the general case and the following conclusions are part of classical equilib-
rium thermodynamics. In details we have the following definitions, where we first consider
the case of a fluid.

14.1 Definition (Fluid). Suppose that η ′ε > 0 in section 11. We assume that the
variables (%, ε) can be transformed into variables (%, θ) via

θ = θ̂(%, ε) :=
1

η̂ ′ε(%, ε)
.

Moreover, the “free energy” f is defined by f = %
2
|v|2+f0, where the “internal free energy”

is
f0 = f̂0(%, θ) := ε− θ η̂(%, ε) for θ = θ̂(%, ε).

Note, that f is a function of θ. The property, that θ may attain any positive number,
is an assumption on η, and a similar property applies to the other examples below. We
compute (omitting the arguments)

f ′θ = −η, f ′% = −θη ′%,

and Gibbs relation 11.7(1) is equivalent to (omitting arguments)

p = %f ′% − f.

For solids we have the following definitions.

14.2 Definition (Solid). Suppose that η ′ε > 0 (or equivalently η ′ε > 0) in section 12.

We assume that the variables (x, ε, F ) can be transformed into variables (x, θ, F ) via

θ = θ̂(x, ε, F ) :=
1

η̂ ′ε(x, ε, F )
.

We define the “free energy” in reference coordinates by

f =
%

2
|V |2 + f

0
,

where the “internal free energy” in reference coordinates is defined by

f
0

= f̂
0
(x, θ, F ) := ε− θ η̂(x, ε, F ) for θ = θ̂(x, ε, F ).

Note, that f is a function of θ. With the above definitions one has the following.

14.3 Lemma. P = −θη ′F = f ′F
under previous assumptions.
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Proof. It is
f

0
= f̂

0
(x, θ, F ) = ε̂(x, θ, F )− θ · η̂(x, ε̂(x, θ, F ), F ) .

Since θ · η̂ ′ε(x, ε̂(x, θ, F ), F ) = 1, we obtain f
0 ′x

= −θη ′x and f
0 ′F

= −θη ′F . It also

follows that f
0 ′θ

= −η. Note that f ′F
= f

0 ′F
.

One can introduce the free energy f by f = J · f◦τ et cetera, or define the quantities
in physical coordinates. In any case, one obtains (omitting the arguments)

θ = θ,

f ′θ = −η, f ′% = −θη ′%,
f ′θ

= −η, f ′F
= −θη ′F

and other things.
The following is an example in nonclassical thermodynamics.

14.4 Definition (Gradient fluid). Suppose that η ′ε > 0 in section 13. We assume that
the variables (%, ε,∇%) can be transformed into variables (%, θ,∇%) via

θ = θ̂(%, ε,∇%) :=
1

η̂ ′ε(%, ε,∇%) .

Moreover, the “free energy” f is defined by f = %
2
|v|2+f0, where the “internal free energy”

f0 = f̂0(%, θ,∇%) := ε− θη̂(%, ε,∇%) for θ = θ̂(%, ε,∇%).
Then (omitting the arguments)

f0 ′θ = −η, f0 ′% = −θη ′%, f0 ′∇% = −θη ′∇%.

Let us consider a quadratic dependence on ∇%

f0 = f̂0(%, θ,∇%) = f̂1(%, θ) +
δ̂(%, θ)

2
|∇%|2. (14.2)

Then (omitting the arguments)

η = −f0 ′θ = −f1 ′θ − δ ′θ
2
|∇%|2,

ε = f0 + θη = f1 − θf1 ′θ +
δ − θδ ′θ

2
|∇%|2,

so that in general the entropy η and the internal energy ε contains a gradient term, it is

η ′∇% = −δ
2
∇%, θ ′∇% = θ ′ε · (θδ ′θ − δ)∇%.

From 13.3(1) we have

Π = p Id−S − θ∇%⊗η ′∇% = p Id−S +∇%⊗f0 ′∇%,
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and from 13.3(2)

p = θη − ε− θ%
δη

δ%
= θη − ε− θ% (η ′% − div η ′∇%)

= −f0 + %

(
f0 ′% − θdiv

(
1

θ
f0 ′∇%

))

= %f1 ′% − f1 + +
%δ ′% − δ

2
|∇%|2 − θ%div

(
δ

θ
∇%

)
.

Hence the momentum equation becomes

∂t(%v) + div(% v⊗v + Π1 + Π2) = f,

where Π = Π1 + Π2 has the form

Π1 = (%f1 ′% − f1) Id−S,

Π2 =

(
%δ ′% − δ

2
|∇%|2 − θ%div

(
δ

θ
∇%

))
Id +δ∇%⊗∇%.

14.5 Lemma. For δ = const in the isothermal case div Π2 = −δ%∇∆%.

Proof. In the isothermal case θ = const and for δ = const one has the form

Π2 = −δ
(

1

2
|∇%|2 + %∆%

)
Id +δ∇%⊗∇%,

which implies the assertion.

15 Solution property

We prove in this section the “solution property” for fluids and solids. These conditions
are formulated in 11.4 and 12.8.

The proofs are here in a common section, since as a main tool we use the Cauchy-
Kowalevski theorem (for a detailed presentation of the theorem see [11]). This theorem
for our purpose requires some assumptions, which are formulated in the main theorems
15.1 and 15.2. The results of this section are not connected to parabolic existence results.
They are a tool to show that enough local solutions exist, and therefore useful to prove
that the entropy principle is satisfied.

In section 11 we introduced (11.4) as equation for a single fluid, which for g = v•f
reads

(∂t + v•∇)%+ %divv = 0,

%(∂t + v•∇)v + divΠ = f,

(∂t + v•∇)ε+ divq + Dv•(ε Id +Π) = 0.

(15.1)

We assumed that physical processes are defined by independent variables %, v, ε and
constitutive relations

Π = Π̂(%, ε,∇%,Dv,∇ε),
q = q̂(%, ε,∇%,Dv,∇ε).

(15.2)
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(In the following we denote by %, ε, ∂j%, ∂jvk, and ∂jε also the variables of these functions.)
We mention, that objectivity implies that Π and q do not depend on v, and that Π ′∂jvk

=

Π ′∂kvj
and q ′∂jvk

= q ′∂kvj
. With the constitutive functions Π̂ and q̂ in (15.2) one can write

the system of differential equations (15.1) in the “explicit form”

∂t%+ v•∇%+ %divv = 0,

%(∂tvk + v•∇vk) +
∑

ij Πki ′∂j%∂ij%+
∑

ijl Πki ′∂jvl
∂ijvl +

∑
ij Πki ′∂jε∂ijε

+
∑

i Πki ′%∂i%+
∑

i Πki ′ε∂iε = fk for k = 1, . . . , n,

∂tε+ v•∇ε+
∑

ij qi ′∂j%∂ij%+
∑

ijl qi ′∂jvl
∂ijvl +

∑
ij qi ′∂jε∂ijε

+
∑

i qi ′%∂i%+
∑

i qi ′ε∂iε.+ Dv•(ε Id +Π) = 0

(15.3)

The main result is the following statement.

15.1 Theorem. Assume that Π̂ and q̂ are continuous differentiable, and for an open and
dense set of arguments these functions are real analytic. Also the function f is continuous
and on an open and dense set real analytic. Moreover, assume that Π̂ is independent of
∇% and ∇ε and that q̂ is independent of Dv. Let the matrix

(∑
i,j eiejΠki ′∂jvl

)
k,l

be invertible, and
∑

i,j eiejqi ′∂jε 6= 0

for some unit vector e = (ei)i=1,...,n. Then for an open and dense set of arguments

(%, v, ε, (∂j%)j , (∂jvk)jk , (∂jε)j) (15.4)

it holds: If this together with (∂t%, (∂tvk)k , ∂tε, (∂ij%)ij , (∂ijvk)ijk , (∂ijε)ij) defines a solu-
tion of (15.3) at a single point, then there exists a local solution of (15.1) (and of (15.3))
in a neighbourhood of this point, which coincides with the data at this single point.

The assumptions on Π and q are as in section 11. We mention, that as an example
Π = p Id−S, see 11.5, satisfies the assumption of the theorem with p = p̂(%, ε) and

Ski =
a

2
(∂ivk + ∂kvi) + b divv δki,

q = c∇η ′ε = cη ′ε%∇%+ cη ′εε∇ε,

where a, b and c are functions of (%, ε) like p, and where we assume differentiability and
analyticity as in the theorem. Then, with e being the n-th unit vector,

Skn ′∂nvl
=
a

2
(δkl + δknδln) + b δknδln,

so that the assumption in the theorem is fulfilled if a 6= 0, b+ a 6= 0, and cη ′εε 6= 0. (The
more restrictive assumption for the entropy principle in section 11 is a > 0, b + a

n
> 0,

and cη ′εε > 0.)
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Proof. We assume that e is the n-th unit vector. We write system (15.1) in the form

∑
i ∂i(%vi) = −∂t%,∑
i ∂iΠki = −%(∂t + v•∇)vk + fk for k = 1, . . . , n,∑
i ∂iqi = −(∂t + v•∇)ε−Dv•(ε Id +Π).

(15.5)

We compute the n-th derivative of the first equation, and obtain

∂n (
∑

i ∂i(%vi)) =
∑

i≤n(vi∂i∂n%+ %∂i∂nvi))

+
∑

i≤n(∂i%∂nvi + ∂n%∂ivi).

Thus (15.5) becomes, see (15.3),

vn∂nn%+ %∂nnvn = −∑
i<n(vi∂ni%+ %∂nivi)

−∑
i≤n(∂i%∂nvi + ∂n%∂ivi)− ∂nt%,∑

l Πkn ′∂nvl
∂nnvl = −∑

i+j<2n

∑
l Πki ′∂jvl

∂ijvl

−∑
i≤n Πki ′%∂i%−

∑
i≤n Πki ′ε∂iε

−%∂tvk − %v•∇vk + fk for k = 1, . . . , n,

qn ′∂n%∂nn%+ qn ′∂nε∂nnε

= −∑
i+j<2n

(
qi ′∂j%∂ij%+ qi ′∂jε∂ijε

)

−∑
i≤n qi ′%∂i%−

∑
≤n qi ′ε∂iε

−∂tε−Dv•(ε Id +Π).

These differential equations are solvable by the Cauchy-Kowalevski theorem, if we intro-
duce Rj := ∂j%, Vkj := ∂jvk, Ej := ∂jε for j = 1, . . . , n. Then let us define

(̃i, j̃) :=

{
(i, j) if i < n,

(j, i) if j < n,
(15.6)

an assignment where one has the choice for i < n and j < n, and consider

Πki = Π̂ki(%, ε, (Rj)j , (Vkj)kj , (Ej)j),

Πki ′∂j% = Π̂ki ′∂j%(%, ε, (Rj)j , (Vkj)kj , (Ej)j),

and the same for other constitutive functions and derivatives. With this the equations
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become
vn∂nRn + %∂nVnn = −∑

i<n(vi∂iRn + %∂iVin)

−∑
i≤n(RiVin +RnVii)− ∂tRn,∑

l Πkn ′∂nvl
∂nVln = −∑

i+j<2n

∑
l Πki ′∂jvl

∂eiVlej
−∑

i≤n (Πki ′%Ri + Πki ′εEi)

−%(∂tvk +
∑

i≤n viVki) + fk for k = 1, . . . , n,

qn ′∂n%∂nRn + qn ′∂nε∂nEn

= −∑
i+j<2n

(
qi ′∂j%∂eiRej + qi ′∂jε∂eiEej

)

−∑
i≤n (qi ′%Ri + qi ′εEi)

−∂tε−
∑

k,i≤n Vki(ε Id +Π) .

(15.7)

This equations have to be complemented by

∂n% = Rn, ∂nvk = Vkn, ∂nε = En,

∂nRi = ∂iRn, ∂nVki = ∂iVkn, ∂nEi = ∂iEn for i < n,

Ri = ∂i%, Vki = ∂ivk, Ei = ∂iε on {xn = const } for i < n,

(15.8)

and, of course by data, which ensure the first differential equation at least initially. This
is

vnRn + %Vnn = −∑
i<n(vi∂i%+ %∂ivi)− ∂t% on {(t, x) ; xn = const } , (15.9)

which can be satisfied by choosing Rn or Vnn appropriately. The application of the Cauchy-
Kowalevski theorem is possible, since the matrix




vn 0 · · · 0 % 0
0 Π1n ′∂nv1 · · · Π1n ′∂nvn−1 Π1n ′∂nvn 0
...

...
...

...
...

0 Πnn ′∂nv1 · · · Πnn ′∂nvn−1 Πnn ′∂nvn 0
qn ′∂n% 0 · · · 0 0 qn ′∂nε




is invertible for an open and dense set of vn values. Thus the system is admissible for the
set of unknowns (%, (vk)k , ε, (Rj)j , (Vkj)kj , (Ej)j), and the Cauchy-Kowalevski theorem
can be applied to the non-characteristic surface {(t, x) ; xn = const }. Thus a local
solution exists, which then is a solution of the three differential equations (15.5) with
given data in a point.

We now come to our second application. In section 12 we had as equation for a single
body (12.9) with r = 0 and g = v•f. In reference coordinates this is (12.10), where
% = %(x) is the mass distribution and, with f := J · (f◦τ),

∂t(%V )− divP = f,

∂tε+ divq = (DV )•P.
(15.10)
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We assume that physical processes are defined by a function x 7→ %(x), by independent
variables φ, ε, and constitutive relations

V = ∂tφ, F = Dφ,

P = P̂ (x, ε, F ),

q = q̂(x, ε, F,∇ε,DF ).

(15.11)

(In the following we denote by x, ε, Fml, ∂jε, and ∂jFml also the variables of these
functions.) Since

∂jFml = ∂jlφm = ∂ljφm = ∂lFmj (15.12)

we can assume that q ′∂jFml
= q ′∂lFmj

. The constitutive functions P̂ and q̂ depend on

different variables, that is why the principle of equipresence, as formulated by Truesdell,
is not satisfied. Using this definition of P̂ and q̂ one can write the system of differential
equations (15.10) in the “explicit form”

%∂tVk −
∑

i Pki ′ε∂iε−
∑

iml Pki ′Fml
∂iFml −

∑
i Pki ′xi

= fk for k = 1, . . . , n,

∂tε+
∑

ij qi ′∂jε
∂ijε+

∑
ijml qi ′∂jFml

∂ijFml

+
∑

i qi ′ε
∂iε+

∑
iml qi ′Fml

∂iFml +
∑

i qi ′zi
= (DV )•P.

(15.13)

The result is the following statement.

15.2 Theorem. Assume that P̂ and q̂ are continuous differentiable, and for an open
and dense set of arguments (x, ε, F,∇ε,DF ) these functions are real analytic. Also the
function f is continuous and on an open and dense set real analytic. Let the matrix




∑
i eiP1i ′ε

∑
ij eiejP1i ′F1j

· · · ∑
ij eiejP1i ′Fnj

...
...

...∑
i eiPni ′ε

∑
ij eiejPni ′F1j

· · · ∑
ij eiejPni ′Fnj∑

ij eiejqi ′∂jε

∑
ij eiejqi ′∂jF1j

· · · ∑
ijl eiejelqi ′∂jFnj




be invertible for some unit vector e = (ei)i=1,...,n. Then for an open and dense set of
arguments

(x, ε, F, (∂jε)j , (∂jF )j) (15.14)

it holds: If this together with (∂tφ, ∂
2
t φ, ∂tε, (∂ijkφ)ijk , (∂ijε)ij) defines a solution of (15.13)

at a single point, then there exists a local solution of (15.10) (and of (15.13)) in a neigh-
bourhood of this point, which coincides with the data at this single point.

If e is the n-th unit vector, the matrix has the form



P1n ′ε P1n ′F1n · · · P1n ′Fnn

...
...

...
Pnn ′ε Pnn ′F1n · · · Pnn ′Fnn

q
n ′∂nε

q
n ′∂nF1n

· · · q
n ′∂nFnn


 (15.15)
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As an example one takes P and q as in (12.12)

P =
1

η ′ε
η ′F , q = c∇η ′ε.

where c is a function of (x, ε, F ), and where we assume differentiability and analyticity

as in the theorem. Then q = c
(
η ′εε∇ε+

∑
ml η ′εFml

∇Fml + η ′εz

)
and, with e being the

n-th unit vector, the matrix has the entries

Pkn ′ε = −
η ′Fkn

η2
ε

η ′εε +
1

η ′ε
η ′Fknε

, Pkn ′Fln
= −

η ′Fkn

η2
ε

η ′εFln
+

1

η ′ε
η ′FknFln

q
n ′∂nε

= cη ′εε, q
n ′∂nFln

= cη ′εFln
,

so that the assumption in the theorem is fulfilled if c 6= 0 and D2
(ε,F )η 6= 0. (The more

restrictive assumption for the entropy principle in section 12, see (12.12), is c > 0, η ′ε >

0. And the concavity of (ε, F ) 7→ η(x, ε, F ) in the form that D2
(ε,F )η < 0 is the usual

assumption.)

Proof. We assume that e is the n-th unit vector. We compute the n-th derivative of the
momentum equation, the first equation in (15.13), and obtain∑

i Pki ′ε∂niε+
∑

iml Pki ′Fml
∂niFml

= %∂ttFkn + ∂n% · ∂2
t ϕk − ∂nfk

−∑
i ∂n(Pki ′ε)∂iε−

∑
iml ∂n(Pki ′Fml

)∂iFml −
∑

i ∂n(Pki ′xi
)

for k = 1, . . . , n,∑
ij qi ′∂jε

∂ijε+
∑

ijml qi ′∂jFml
∂ijFml

= (DV )•P − ∂tε

−∑
i qi ′ε

∂iε−
∑

iml qi ′Fml
∂iFml −

∑
i qi ′xi

where the second equation is the second in (15.13). We consider these equations in a
neighbourhood of {xn = const } with (15.16), to ensure the validity of the first equation
in (15.13).

To apply the Cauchy-Kowalevski theorem, we use the variables ε, ϕm for m = 1, . . . , n,
and introduce the variables Ei and Fmi for i = 0, . . . , n, and Gmij for i, j = 0, . . . , n.
Besides the auxiliary equations

∂nε = En, ∂nϕm = Fmn,

∂nFmj = Gmjn for i = 0, . . . , n,

∂nGmij =

{
∂iGmnj if 0 ≤ i < n

∂jGmin if 0 ≤ j < n
for 0 ≤ i+ j < 2n,

and the auxiliary Cauchy data

Ei = ∂iε, Fmi = ∂iϕm for i = 0, . . . , n− 1,

Gmij =

{
∂iFmj if 0 ≤ i < n

∂jFmi if 0 ≤ j < n
for 0 ≤ i+ j < 2n,
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we have the equations for En and for Gmnn for m = 1, . . . , n, where (̃i, j̃) is chosen exactly
as in (15.6),

Pkn ′ε∂nEn +
∑

m Pkn ′Fmn∂nGmnn

= −∑
1≤i<n Pki ′ε∂iEn −

∑
2≤i+j<2n

∑
m Pki ′Fmj

∂eiGmejn
+%∂0Gkn0 + ∂n% ·Gk00 − ∂nfk

−∑
1≤i≤n Pki ′εεEnEi −

∑
1≤i,j≤n

∑
m Pki ′εFmj

(GmjnEi + EnGmji)

−∑
1≤i,j,j≤n

∑
mm Pki ′FmjFmj

GmjnGmji

−∑
1≤i≤n Pki ′xiε

En −
∑

1≤i,j≤n

∑
m Pki ′xiFmj

Gmjn

−∑
1≤i≤n Pki ′εxn

Ei −
∑

1≤i,j≤n

∑
m Pki ′Fmjxn

Gmji −
∑

1≤i≤n Pki ′xixn

for k = 1, . . . , n,

q
n ′∂nε

∂nEn +
∑

m qn ′∂nFmn
∂nGmnn

= −∑
2≤i+j<2n qi ′∂jε

∂eiEej −
∑

3≤i+j+l<3n

∑
m qi ′∂jFml





∂iGmlj if i < n

∂jGmli if j < n

∂lGmij if l < n

+
∑

1≤j≤n

∑
mGmj0Pmj − E0

−∑
1≤i≤n qi ′ε

Ei −
∑

2≤i+l≤2n

∑
m qi ′Fml

Gmli −
∑

1≤i≤n qi ′xi

.

In addition we have to satisfy Cauchy data, which ensure the first differential equation of
(15.13), on {xn = const },

Pkn ′εEn +
∑

m Pkn ′FmnGmnn

= −∑
1≤i<n Pki ′εEi −

∑
2≤i+j<2n

∑
m Pki ′Fmj

Gmji

+% ·Gk00 − fk −
∑

1≤i≤n Pki ′xi
,

(15.16)

which corresponds to a choice of Cauchy data for En and Gmnn. They exist since the
determinant of the matrix in (15.15) is nonzero.

The terms with the second n-th derivative on the left side have a nonzero determinant,
by assumption on the matrix (15.15). Therefore we can apply the Cauchy-Kowalevski
theorem similar as in the first statement.

16 Appendix (Constant objective tensors)

In this section we proof necessary structures for objective quantities. We consider a
constant objective m-tensor C = (ci1,...,im)i1,...,im=1,...,n. This means, that for all orthogonal
matrices Q in IRn with detQ = 1 the following identity is satisfied:

ci1,...,im =
n∑

ī1,...,̄im=1

Qi1 ī1 · . . . ·Qim īmcī1,...,̄im . (16.1)
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We assume n ≥ 2 (for n = 1 there is only Q = Id). Setting Q = exp (sA) with an
antisymmetric matrix A, and taking the derivative with respect to s in (16.1) at s = 0
one obtains

0 =
n∑

ī1=1

Ai1 ī1cī1,i2,...,im +
n∑

ī2=1

Ai2 ī2ci1 ,̄i2,i3,...,im

+ . . .+
n∑

īm=1

Aim īmci1,...,im−1 ,̄im .

(16.2)

One can show

16.1 Theorem. For a constant objective m-tensor C = (ci1,...,im)i1,...,im=1,...,n properties
(16.2) and (16.1) are equivalent.

Proof. Assume (16.2) holds. Denote the right-hand side of (16.1) by

Fi(Q) :=
n∑

ī1,...,̄im=1

Qi1 ī1 · . . . ·Qim īmcī1,...,̄im for i = (i1, . . . , im).

Consider a smooth curve s 7→ Q(s) with Q(0) = Id. Then with A(s) := Q̇(s)QT(s) one
computes

d

ds
Fi(Q(s)) =

n∑

k=1

Ai1kFk,i2,...,im(Q(s)) +
n∑

k=1

Ai2kFi1,k,i3,...,im(Q(s))

+ . . .+
n∑

k=1

AimkFi1,,...,im−1,k(Q(s)).

Using (16.2), we see that the same differential equation holds for the function s 7→
Fi(Q(s)) − ci. Since Fi(Q(0)) − ci = 0 for all i, we obtain Fi(Q(s)) − ci = 0 for all
s and i.

Since the set of orthogonal matrices with positive determinant is a connected manifold,
we can reach any such matrix with a curve starting at the identity.

Varying over all antisymmetric matrices one sees that (16.2) is equivalent to the fact,
that

δi1,rcs,i2,...,im + δi2,rci1,s,i3,...,im + . . .+ δim,rci1,...,im−1,s

is symmetric in r, s ∈ {1, . . . , n} (16.3)

for all i1, . . . , im = 1, . . . , n. We consider property (16.3) in the subsequent arguments
and show consequences of it. We do not claim that this is the most efficient way to derive
these conclusions, but at least there is a unified background.

• Case m = 1.

Then (16.3) reads
δi,rcs = δi,scr for all i and r 6= s.

Setting i = r we get cs = 0, and this for all s, hence
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16.2 Lemma. If m = 1 and C satisfies (16.1), then C = 0.

• Case m = 2.

Then (16.3) reads

δi,rcs,j + δj,rci,s = δi,scr,j + δj,sci,r for all i, j and r 6= s.

Setting i = r, j = s we get
cs,s = cr,r for all r 6= s ,

hence for some number a
ci,i = a for all i .

If n ≥ 3 set i = r and let j 6= r, s. This gives

cs,j = 0 for all j 6= s .

Thus
C = a Id .

For n = 2 set i = j = r and obtain

cs,r + cr,s = 0 for s 6= r ,

hence for some number b

C = a

[
1 0
0 1

]
+ b

[
0 1
−1 0

]
. (16.4)

16.3 Lemma. If m = 2 and C satisfies (16.1), then if n = 3 the matrix C is a multiple
of the identity. If n = 2 then C has the representation (16.4).

• Case m = 3.

Then (16.3) reads

δi,rcs,j,k + δj,rci,s,k + δk,rci,j,s

= δi,scr,j,k + δj,sci,r,k + δk,sci,j,r for all i, j, k and r 6= s.
(16.5)

We consider the case n ≥ 3. For r = k = j, and three different i, k, and s this gives

ci,s,k + ci,k,s = 0 for all s, k 6= i with s 6= k.

For i = j, r = k, and three different i, k, and s the identity gives

ci,i,s = 0 for all s 6= i,

and for j = k, r = i, and different i, k, and s this gives

cs,j,j = 0 for all s 6= j.
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For k = i 6= j and s = i, r = j this gives ci,i,i = cj,j,i + ci,j,j, which is 0 by the previous
results, thus

ci,i,i = 0 for all i.

Therefore we have seen that

ci,j,k is antisymmetric in j, k.

Interchanging two indices leads to a tensor, which again is objective, hence the above
antisymmetry applies to the new tensor. It follows that C is antisymmetric in every pair
of indices. Every such 3-tensor is objective.

16.4 Lemma. If m = 3 then C satisfies (16.1) if and only if C is antisymmetric in every
pair of indices. If n = 3, then C satisfies (16.6), if n ≥ 4, then C = 0.

For n ≥ 4 obtain for empty set {r, s} ∩ {i, j}

δk,rci,j,s = δk,sci,j,r

and then for k = s 6= r

ci,j,r = 0 for all r 6= i, j.

Together with the above antisymmetry it follows that C = 0. For n = 3 we have

a := c1,2,3 = −c1,3,2 = c3,1,2 = −c3,2,1 = c2,3,1 = −c2,1,3,

and all other components vanish. Hence for vectors ξ ∈ IR3

Cξ :=
(∑3

k=1 cijkξk
)

i,j=1,...,n
= a ·




0 ξ3 −ξ2
−ξ3 0 ξ1
ξ2 −ξ1 0


 . (16.6)

• Case m = 4.

We consider the case n ≥ 3. Equation (16.3) reads

δi,rcs,j,k,l + δj,rci,s,k,l + δk,rci,j,s,l + δl,rci,j,k,s

= δi,scr,j,k,l + δj,sci,r,k,l + δk,sci,j,r,l + δl,sci,j,k,r for all i, j, k, l and r 6= s.
(16.7)

Let us assume, that C is symmetric in the last two indices, that is

ci,j,k,l = ci,j,l,k for all i, j, k, l.

Set i = j in (16.7). Then

δi,r(cs,i,k,l + ci,s,k,l) + δk,rci,i,s,l + δl,rci,i,k,s

= δi,s(cr,i,k,l + ci,r,k,l) + δk,sci,i,r,l + δl,sci,i,k,r for r 6= s and all i, k, l.
(16.8)
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For k, l, r, s 6= i with r 6= s one obtains

δk,rci,i,s,l + δl,rci,i,k,s = δk,sci,i,r,l + δl,sci,i,k,r.

This is the characterization of the objective 2-tensor (ci,i,k,l)k,l=1,...,n in n− 1 dimensions.
Since n − 1 ≥ 2 and symmetry is assumed, the above result 16.3 implies with a real
number bi

ci,i,k,l = biδk,l for all k, l 6= i. (16.9)

For r, s 6= i with r 6= s and k = r, l = i one obtains

ci,i,s,i = 0 for all s 6= i. (16.10)

Now, in (16.8), set k = i and let l, r, s 6= i with r 6= s. One obtains

δl,rci,i,i,s = δl,sci,i,i,r for all i and l, r, s 6= i with r 6= s.

For l = r this gives
ci,i,i,s = 0 for all s 6= i.

Together with (16.9) this gives

ci,i,k,l = 0 for all k 6= l,

ci,i,k,k = bi for all k 6= i,

ci,i,i,i so far undetermined.

(16.11)

Now, in (16.8), set r = i and let k, l, s 6= i (then r 6= s). One obtains

cs,i,k,l + ci,s,k,l = δk,sci,i,i,l + δl,sci,i,k,i.

The right-hand side vanishes by the first identity in (16.11), hence

cs,i,k,l + ci,s,k,l = 0 for all k, l, s 6= i,

or relabeled

cj,i,k,l + ci,j,k,l = 0 for all i 6= j and all k, l 6= i or k, l 6= j.

Denoting the symmetrization with respect to the first two indices by

c′i,j,k,l :=
1

2
(ci,j,k,l + cj,i,k,l) for all i, j, k, l (16.12)

we obtain c′i,j,k,l = c′j,i,k,l = 0 for all i 6= j and all k, l 6= i or k, l 6= j, that is

c′i,j,k,l = 0 for all i 6= j and k, l with {k, l} 6= {i, j}. (16.13)

For {k, l} = {i, j} we get

ai,j := c′i,j,i,j = c′i,j,j,i = c′j,i,i,j = c′j,i,j,i = aj,i.
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Now let i 6= j in (16.7). Then for r = i and s 6= i this identity becomes

cs,j,k,l + δk,ici,j,s,l + δl,ici,j,k,s

= δj,sci,i,k,l + δk,sci,j,i,l + δl,sci,j,k,i for i 6= j, and s 6= i, and all k, l.
(16.14)

As first case in (16.14) let s = j. Then

cj,j,k,l + δk,ici,j,j,l + δl,ici,j,k,j

= ci,i,k,l + δk,jci,j,i,l + δl,jci,j,k,i for all k, l.

For k = l 6= i, j this gives

cj,j,k,k = ci,i,k,k for all i 6= j and k 6= i, j ,

thus in the second identity in (16.11) for some number b

bi = b for all i.

For k = l = i we obtain
cj,j,i,i + ci,j,j,i + ci,j,i,j = ci,i,i,i,

which by definition of b becomes

ci,i,i,i = b+ ci,j,j,i + ci,j,i,j,

and for k = l = j we obtain

cj,j,j,j = ci,i,j,j + ci,j,i,j + ci,j,j,i = b+ ci,j,i,j + ci,j,j,i,

and interchanging i, j
ci,i,i,i = b+ cj,i,j,i + cj,i,i,j.

Adding up both equations for ci,i,i,i we arrive at

ci,i,i,i = b+ c′i,j,j,i + c′i,j,i,j = b+ 2ai,j (16.15)

by definition of ai,j. As second case in (16.14) let s 6= i, j. Then

cs,j,k,l + δk,ici,j,s,l + δl,ici,j,k,s

= δk,sci,j,i,l + δl,sci,j,k,i for i 6= j and s 6= i, j, and all k, l.

For k = s and l = j this gives

cs,j,s,j = ci,j,i,j for all i 6= j and s 6= i, j.

From now on let us consider only C ′ :=
(
c′i,j,k,l

)
i,j,k,l=1,...,n

given by (16.12), that is the

symmetric part of C with respect to the first two indices. Since also C ′ is a constant
objective 4-tensor (the same for the corresponding antisymmetric part), we can apply all
results also to C ′. In particular, the last identity becomes

c′s,j,s,j = c′i,j,i,j for all i 6= j and s 6= i, j,
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which by symmetry means that c′ei,ej,ei,ej = c′i,j,i,j for all i 6= j and ĩ 6= j̃. Hence for some

number a
ai,j = a for all i 6= j.

Therefore c′i,i,i,i = b + 2a from (16.15). Summing up, we have shown that C ′ has the
following structure:

c′i,j,k,l = 0 except that

c′i,i,k,k = b for all k 6= i,

c′i,i,i,i = b+ 2a for all i,

c′i,j,i,j = c′i,j,j,i = c′j,i,i,j = c′j,i,j,i = a for all j 6= i.

(16.16)

This means that

c′i,j,k,l = a(δk,iδl,j + δl,iδk,j) + bδk,lδi,j for all i, j, k, l. (16.17)

Or equivalently, for all matrices M = (mi,j)i,j=1,...,n

∑n
k,l=1 c

′
i,j,k,lmk,l = a · (mi,j +mj,i) + b · trace (M) · δi,j,

that is,

C ′(M) :=
(∑n

k,l=1 c
′
i,j,k,lmk,l

)
i,j=1,...,n

= a · (M +M T) + b · trace (M) · Id . (16.18)

16.5 Lemma. If m = 4, n ≥ 3, and C ′ satisfies (16.1), then if C ′ is symmetric in the last
two arguments and C ′ is symmetric in the first two arguments it has the form in (16.18).
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