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Abstract. In this paper we prove an abstract existence theorem which can
be applied to solve parabolic problems in a wide range of applications. It also

applies to parabolic variational inequalities. The abstract theorem is based

on a Gelfand triple (V,H, V ∗), where the standard realization for parabolic

systems of second order is (W 1,2(Ω), L2(Ω),W 1,2(Ω)
∗
). But also realizations

to other problems are possible, for example, to fourth order systems. In all

applications to boundary value problems the set M ⊂ V is an affine subspace,

whereas for variational inequalities the constraint M is a closed convex set.
The proof is purely abstract and new. The corresponding compactness

theorem is based on [5]. The present paper is suitable for lectures, since it

relays on the corresponding abstract elliptic theory.

1. Introduction. In this paper we give an abstract existence proof for parabolic
systems. The abstract theorem has been applied to many boundary value problems.
Among other things it includes also cases in which the parabolic part is degener-
ated, therefore it contains elliptic-parabolic problems. It also includes the case of a
convex constraint, therefore it contains variational inequalities. The proof for the
combination of both effects is new, and has been presented by me in the lecture
about partial differential equations in 2003.

There are two main reasons for this approach. One is mathematical, and consists
of degenerate parabolic systems occurring in physical applications. The theory in
this paper applies for example to boundary value problems of parabolic systems as
shown in 11.1. Other applications one finds in [5], [6], [18], [4]. The proof is based
on the estimates given in sections 7 and 8. The theory is more general than the
parabolic existence theorems in [1], [12], [15], [19].

The other reason lies in theoretical physics and is the entropy principle as formu-
lated in rational thermodynamics, see e.g. [20]. It implies that the estimate, which
is the basic estimate of our approach, is equivalent with this entropy inequality.
Thus the equations coming from physics are left for mathematical treatment in the
original physical setting.

The method of this paper is worthwhile to make some comments. First of all
it is a purely abstract formulation of the underlying variational inequality. In this
formulation spaces with respect to the space variable are a Hilbert space H for the
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parabolic term and a Banach space V for the elliptic term, such that (V,H, V ∗) is
a Gelfand triple, which in a sloppy formulation means that

V ↪→ H ↪→ V ∗. (1.1)

The standard case for V ↪→ H is, that H and V satisfy

V ⊂ H with a continuous mapping IdV : V → H. (1.2)

The general case can be reduced to this special situation, see 13.2. The relation
H ↪→ V ∗ is explained in 13.1. To generalize this paper to a Banach space H is an
interesting question, see section 12.

This paper contains variational inequalities in an abstract setting. Essentially
this is achieved by a choice of the set M . Let us explain this choice. If M is an affine
subspace, we are dealing, for example, with a standard boundary value problem.
That is, if Ω is a bounded Lipschitz domain,

V = W 1,2(Ω), Γ ⊂ ∂Ω closed,

M = {u ∈ V ; u = u1 on Γ},

we are looking for the solution u of the problem

∂tu− diva(u,∇u) = f in ]0, T [×Ω,

u = u1 in ]0, T [×Γ,

ν•a(u,∇u) = g in ]0, T [×(∂Ω \ Γ),

u = u0 in {0} × Ω.

If ∂tu exists as a function in L2([0, T ]× Ω), a weak version of this is

u ∈ L2([0, T ];M) and u = u0 in {0} × Ω and∫ T

0

∫
Ω

(ζ · ∂tu+∇ζ•a(u,∇u)− ζf) dLn dL1 −
∫ T

0

∫
∂Ω

ζg dHn−1 dL1 = 0

for ζ = u− v with v ∈ L2([0, T ];M).

A different situation arises for a variational inequality. We assume that the in-
equality is given by the inequality u ≥ 0. Then the strong version of the Dirichlet
problem, with Dirichlet data u1 ≥ 0 and initial data u0 ≥ 0, reads

u ≥ 0 in ]0, T [×Ω,

∂tu− diva(u,∇u) = f in (]0, T [×Ω) ∩ {u > 0},
ν•a(u,∇u) = 0 on (]0, T [×Ω) ∩ ∂{u > 0},
u = u1 on ]0, T [×∂Ω,

u = u0 on {0} × Ω.

If ai(u,∇u) =
∑
j aij(u)∂ju and an elliptic matrix (aij)ij , it is easy to see, that the

condition at the free surface (]0, T [×Ω) ∩ ∂{u > 0} is ∂νu = 0. Let us write the
solution in a weak form. If we define

M = {u ∈ V ; u ≥ 0 almost everywhere},
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this weak version can be written, if ∂tu exists as a function, as

u ∈ L2([0, T ];M) and u = u0 in {0} × Ω and∫ T

0

∫
Ω

((u− v) · ∂tu+∇(u− v)•a(u,∇u)− (u− v)f) dLn dL1 ≤ 0

for all v ∈ L2([0, T ];M).

Now, in general one does not know that ∂tu is a function, it is only defined as a
distribution. However, then the term u∂tu in the equation is not defined, but this
term formally can be written as 1

2∂t(u
2) and then can be integrated. One obtains

the following weak version

u ∈ L2([0, T ];M) and∫
Ω

(
1

2

(
|u(t̄)|2 − |u0|2

)
− v(t̄)(u(t̄)− u0)

)
dLn

+

∫ t̄

0

∫
Ω

(∂tv(u− u0) +∇(u− v)a(u,∇u)− (u− v)f) dLn dL1 ≤ 0

for almost all t̄ ∈]0, T [, and this for all v ∈ C∞([0, T ];M).

This is of the form of the existence theorem, as we formulate it in 6.2, in the special
case that b(u) = u.

Therefore in this paper the goal is to prove the general existence theorem 6.2 in
an abstract setting for a general closed and convex set M ⊂ V . The usual version
for parabolic equations, that is M is a subspace, is a consequence of this general
theorem and formulated in 6.3.

There is a large class of problems to which this existence theorem can be applied.
Some are presented in section 11. Realistic elliptic-parabolic boundary value prob-
lems, which fall under the theorem in this paper, one finds in [11]. We mention,
that this paper also contains vector valued versions of such variational inequalities.
However, the large class of problems where u 7→ b(u) has a jump, is not contained
in this paper. However, the basic estimates in this paper generalize to such jump
nonlinearities, so that the existence theorems can be used as an approximating step.

The constraint in this paper is a time independent set M ⊂ V . It often happens
that the more general case of a time dependent constraint occurs. The proof is more
involved, therefore not contained in this paper (see the argumentation in [13]).

There are different approaches to parabolic existence theory with a constraint.
In particular the approach by [15], where a variational formulation is formulated
and the elliptic part is of gradient structure. In this situation one can multiply by
∂tu and obtains an estimate on the time derivative.

Note: The main part of this paper has been presented during my lecture in 2003. I
hope that this theory, which builds on the theory of corresponding stationary prob-
lems, can therefore be used in future lectures on functional analysis or on partial
differential equations.

2. Motivation. In the following we present some formal observations, which show
that the type of system we consider is a consequence of general necessities. Consider
a system of partial differential equations

∂tvk + divqk = τk for k = 1, . . . , N, (2.1)
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where, in order to complete the system, we have to specify terms and determine
the independent variables. Independent of this we want to derive an estimate.
Therefore let us multiply the k-th equation by a function λk. Then summing over
k we get ∑

k

λk∂tvk +
∑
k

λkdivqk =
∑
k

λkτk. (2.2)

This identity should behave like a parabolic one, that is, integrated over a domain
]t0, t1[×Ω it should be controlled by initial and boundary terms. Thus we require
that an identity ∑

k

λk∂tvk = ∂tw (2.3)

holds with a quantity w. If this is true, we obtain

0 =
∑
k

λk∂tvk +
∑
k

λkdivqk −
∑
k

λkτk

= ∂tw + div
(∑

k

λkqk

)
−
∑
kj

∂jλk · qkj −
∑
k

λkτk,

where qk = (qkj)j=1,...,n. Writing τk = rk + gk this gives

∂tw + div
(∑

k

λkqk

)
+
(∑

kj

∂jλk · (−qkj) +
∑
k

λk · (−rk)
)

=
∑
k

λkgk, (2.4)

where usually the qkj-term and the rk-term are dissipative terms and gk denotes an
external term. Integrating this identity over ]t0, t1[×Ω we obtain∫

Ω

w(t1, x) dx

+

∫ t1

t0

∫
Ω

(∑
kj

∂jλk(t, x) · (−qkj(t, x)) +
∑
k

λk(t, x) · (−rk(t, x))
)

dxdt

=

∫
Ω

w(t0, x) dx−
∫ t1

t0

∫
∂Ω

∑
k

λk(t, x)qk(t, x)•ν(x) dHn−1(x) dt

+

∫ t1

t0

∫
Ω

∑
k

λk(t, x)gk(t, x) dx dt .

The first term on the right side contains initial conditions and the second term
boundary conditions, whereas the last one is the external term. Therefore the two
terms on the left side are the essential ones. The positivity of the second integrand

D :=
∑
kj

∂jλk · (−qkj) +
∑
k

λk · (−rk),

if postulated, means that the dissipative term has a sign. Assuming that our N
equations are linearly independent we introduce independent variables uk, k =
1, . . . , N , and denote the vector u = (uk)k. Let us for a moment assume that
further qk = −

∑
l akl(u)∇u, and for simplicity rk = 0. Then, if λk = λk(u), the

dissipative term reads

D =
∑
k

∇λk · (−qk) =
∑
ml

(∑
k

λk ′um(u)akl(u)
)
∇um•∇ul,



EXISTENCE THEOREM FOR PARABOLIC SYSTEMS 2083

which has the correct sign D ≥ 0, if the matrix(∑
k

λk ′um(u)akl(u)

)
ml

is positive semidefinite. We have a freedom to choose the functions uk, they are
not determined by the equations, and properties determined by the equations are
independent of the choice of uk. One particular choice is λk = uk, in which case
(2.3) becomes ∑

k

uk∂tvk = ∂tw . (2.5)

Another possibility would be, to choose the functions vk as independent variable,
which would not change the procedure of this paper. However, what we do not
assume, is that uk and vk are the same, that is a very special case.

Thus what remains is to study the first term on the left side of (2.2), that is
(2.5). Let us introduce the vector notation u = (uk)k as above and v = (vk)k. If
w = ϕ(v) in (2.5), thus introducing v as independent set of variables, equation (2.5)
is equivalent to ∑

k

uk∂tvk = ∂tϕ(v) =
∑
k

ϕ ′vk(v)∂tvk.

Therefore, if the derivatives ∂tvk are independent from each other, we derive as
necessary condition

uk = ϕ ′vk(v). (2.6)

On the other hand, if v = β(u), hence we introduce u as independent set of variables,
equation (2.5) is equivalent to, if w = Φ(u) (it is Φ = ϕ◦β),∑

k

uk∂tβk(u) = ∂t(Φ(u)),

which one can write as∑
kl

ukβk ′ul(u)∂tul =
∑
l

Φ ′ul(u)∂tul.

If the derivatives ∂tul are independent from each other, we derive as necessary
condition ∑

k

ukβk ′ul(u) = Φ ′ul(u).

By taking the derivative of this equation with respect to um one obtains

βm ′ul(u) +
∑
k

ukβk ′ulum(u) = Φ ′ulum(u),

from which it follows that (βm ′ul(u))m,l is a symmetric matrix, therefore

βk ′ul(u) = βl ′uk(u) for all k, l. (2.7)

If this is true for all u, one has for a certain function ψ

vk = βk(u) = ψ ′uk(u) for all k. (2.8)

We have seen, that (2.5) implies conditions (2.6) and (2.8), that is

vk = ψ ′uk(u) and uk = ϕ ′vk(v) for all k, (2.9)
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which means, that u and v are dual variables to each other. As a consequence

(ϕ(β(u)) + ψ(u)) ′ul =
∑
k

ϕ ′vk(β(u))βk ′ul(u) + ψ ′ul(u)

=
∑
k

ukβk ′ul(u) + vl =
∑
k

(ukβk(u)) ′ul ,

so that

ϕ(v) + ψ(u) =
∑
k

ukvk + const. for u and v as in (2.9). (2.10)

3. Conjugate function. Let H be a Hilbert space and ψ : H → IR ∪ {+∞} be a
mapping, which is not identical to +∞, and which is convex and lower semicontin-
uous. The dual mapping ψ∗, defined by

ψ∗(z∗) := sup
z∈H

(
( z , z∗ )H − ψ(z)

)
, (3.1)

is a mapping with the same properties, that is, ψ∗ : H → IR∪{+∞} is not identical
+∞, convex and lower semicontinuous. The map ψ∗ is called the conjugate convex
function of ψ, or Fenchel transformation of ψ. The main inequality reads

( z , z∗ )H ≤ ψ(z) + ψ∗(z∗) for all z, z∗ ∈ H, (3.2)

which is Young’s inequality. In this inequality, for given z∗, the equality holds for
z, if the supremum of ψ∗(z∗) in definition (3.1) is attained for this z. It also follows
that (ψ∗)∗ = ψ. Simple cases are

3.1 Examples. Let H = IR.

(1) For p ∈]1,∞[ the convex function is ψp(x) := 1
p |x|

p. Then the dual mapping

of ψp is (ψp)
∗(x∗) = ψp∗(x

∗) = 1
p∗ |x

∗|p∗ , if p∗ is the dual exponent of p, that is

1

p
+

1

p∗
= 1.

Then for δ > 0

ab = δa · b
δ
≤ ψp(δa) + ψp∗

(
b

δ

)
=
δp

p
ap +

1

δp∗p∗
bp
∗

is the corresponding Young inequality.

(2) If the convex function ψ is given by

ψ(x) :=
1

2
max(x, 0)2, then ψ∗(x∗) =

 +∞ for x∗ < 0,

1

2
|x∗|2 for x∗ ≥ 0,

is the corresponding conjugate function ψ∗.

A subgradient z∗ ∈ H of ψ in z is defined by

ψ(z̄) ≥ ψ(z) + ( z̄ − z , z∗ )H for all z̄ ∈ H, (3.3)

and the subdifferential

∂ψ(z) := {z∗ ∈ H ; z∗ is subgradient of ψ in z}. (3.4)
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3.2 Lemma. It is

z∗ ∈ ∂ψ(z) ⇐⇒ z ∈ ∂ψ∗(z∗)
and one of these statements implies, that ψ(z) < +∞ and ψ∗(z∗) < +∞, and is
equivalent to

ψ(z) + ψ∗(z∗) = ( z , z∗ )H .

Proof. The statement z∗ ∈ ∂ψ(z) implies by (3.4), that (3.3) is satisfied, which
implies ψ(z) < +∞, since ψ(z̄) is not infinite for all z̄ ∈ H, that is, is finite for some
z̄ ∈ H. Then (3.3) is equivalent to

0 ≥ ψ(z) + ψ∗(z∗)− ( z , z∗ )H ,

which is symmetric in (ψ, z) and (ψ∗, z∗). We mention, that this inequality is the
inverse Young inequality (3.2) and therefore really must be an equality.

The Weierstraß function Eψ is nonnegative, if the function ψ is convex. Then
the graph of ψ lies above a plain.

3.3 Weierstraß E-function. For z∗2 ∈ ∂ψ(z2) we define

Eψ(z1, z2, z
∗
2) := ψ(z1)− ψ(z2)− ( z1 − z2 , z

∗
2 )H

ψ(z1)− (ψ(z2) + ( z1 − z2 , z
∗
2 )H) ≥ 0,

which is nonnegative since z∗2 lies in ∂ψ(z2).

Note: If ψ is differentiable in z2 then (z1, z2) 7→ Eψ(z1, z2,∇ψ(z2)) is the usual
E-function depending on two variables.

Proof. Since ψ is convex, the property z∗2 ∈ ∂ψ(z2) implies that Eψ is nonnegative.

For z0 ∈ H the translated function is

ψz0(z) := ψ(z0 + z). (3.5)

Then the subdifferential ∂ψz0(z) = ∂ψ(z0 + z) is just a shift and for the conjugate
convex function (ψz0)∗(z∗) = ψ∗(z∗) − ( z0 , z

∗ )H . For a convex C1-function one
obtains

3.4 Lemma. Let ψ : H → IR ∪ {+∞} as above and D ⊂ H be open and convex.
Assume that ψ is finite and continuously differentiable on D and ψ =∞ in H \D.
Then

(1) b := ∇ψ : D → H is monotone (increasing) in D.

(2) For z ∈ D the subdifferential is ∂ψ(z) = {b(z)}.
(3) For z ∈ D and z∗ = b(z) it is

( z , z∗ )H = ψ∗(z∗) + ψ(z).

With this the Weierstraß E-function is defined for (z1, z2) ∈ D ×D by

(z1, z2) 7→ Eψ(z1, z2,∇ψ(z2)) = ψ(z1)− ψ(z2)− ( z1 − z2 , ∇ψ(z2) )H

= ψ(z1)− ψ(z2)− ( z1 − z2 , b(z2) )H .
(3.6)

3.5 Lemma. Let ψ and D as in 3.4. Then

Eψ∗(z
∗
1 , z
∗
2 , z2) = Eψ(z2, z1, z

∗
1)
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for z1, z2 ∈ D and z∗1 = b(z1), z∗2 = b(z2).

Proof. By 3.4(3)

Eψ∗(z
∗
1 , z
∗
2 , z2) = ψ∗(z∗1)− ψ∗(z∗2)− ( z∗1 − z∗2 , z2 )H

= (−ψ(z1) + ( z1 , z
∗
1 )H) + (ψ(z2)− ( z2 , z

∗
2 )H)− ( z∗1 − z∗2 , z2 )H

= −ψ(z1) + ψ(z2) + ( z1 − z2 , z
∗
1 )H = Eψ(z2, z1, z

∗
1),

if we take the definition.

Concerning b we will need for the next sections the following definition, which
essentially is the conjugate function z∗ 7→ ψ∗z0(z∗) for z∗ = b(z).

3.6 Definition. Let ψ and D as in 3.4 and b as in 3.4(1). For z0 ∈ D define a
function Bz0 : D → IR by

Bz0(z) := (ψz0)∗(b(z)) + ψz0(0)
(

= Eψ(z0, z, b(z))
)

= ( z − z0 , b(z) )H − ψ(z) + ψ(z0)

=

∫ 1

0

( z − z0 , b(z)− b((1− s)z0 + sz) )H ds.

It is Bz0 nonnegative, that is Bz0 ≥ 0.

Proof. Using 3.4(3) and 3.4(1) one obtains the identities for Bz0(z). By the con-
vexity of ψ, or the monotonicity of b, or the nonnegativity of Eψ, the terms in the
definition are nonnegative.

Then

3.7 Lemma. For z0, z1, z2 ∈ D

( z1 − z0 , b(z1)− b(z2) )H = Bz0(z1)−Bz0(z2) + Eψ(z1, z2,∇ψ(z2))

≥ Bz0(z1)−Bz0(z2) .

Proof. By the previous definition 3.6

Bz0(z1)−Bz0(z2)

= ( z1 − z0 , b(z1) )H − ψ(z1)− ( z2 − z0 , b(z2) )H + ψ(z2)

= ( z1 − z0 , b(z1)− b(z2) )H + ( z1 − z2 , b(z2) )H − ψ(z1) + ψ(z2)

= ( z1 − z0 , b(z1)− b(z2) )H − Eψ(z1, z2,∇ψ(z2))

≤ ( z1 − z0 , b(z1)− b(z2) )H

using the formula for Eψ in (3.6).

Whereas ψ∗z0 for the example in 3.1 with p <∞ grows at infinity of order p∗, in
general one has only the following lemma.

3.8 Superlinearity of ψ∗z0 . Let ψ : H → H be convex and lower semicontinuous,
and bounded on bounded subsets of H. Then for δ > 0 and z0 ∈ H there exists a
constant Cδ,z0 so that

‖z∗‖H ≤ δψ
∗
z0(z∗) + Cδ,z0 for all z∗ ∈ H.
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Proof. We compute

(ψz0)∗(z∗) ≥ sup
z∈∂B 1

δ
(0)⊂H

(
( z , z∗ )H − ψz0(z)

)
≥ sup

z∈∂B 1
δ

(0)

( z , z∗ )H − sup
z∈∂B 1

δ
(0)

ψz0(z)

=
1

δ
‖z∗‖H − sup

z∈∂B 1
δ

(0)

ψz0(z).

This implies, if ψ and D = H as in 3.4, and b as in 3.4(1) and B as in 3.6, that

there is a constant C̃δ,z0 := Cδ,z0 − δψz0(0) with

‖b(z)‖H ≤ δBz0(z) + C̃δ,z0 for all z ∈ H and δ > 0. (3.7)

4. Elliptic theorem. The parabolic existence proof is based on the following el-
liptic theorem, which is formulated on a closed, convex set M of a Banach space
V ,

M ⊂ V nonempty, closed, and convex. (4.1)

Further a map

F : M → V ∗ (4.2)

is given, where V ∗ is the dual space of V . By (w,w∗) 7→ 〈w , w∗ 〉V := w∗(w) for
w ∈ V and w∗ ∈ V ∗ we denote the dual product of V . The main assumption for
the elliptic existence theorem 4.2 is the

4.1 Continuity condition. The following holds: Let um, u ∈ V and v∗ ∈ V ∗ with
um, u ∈M and um → u weakly in V for m→∞,
F (um)→ v∗ weakly∗ in V ∗ for m→∞, and

lim sup
m→∞

〈um , F (um) 〉V ≤ 〈u , v
∗ 〉V ,


then { 〈u− v , F (u)− v∗ 〉V ≤ 0 for all v ∈M , and

lim sup
m→∞

〈um , F (um) 〉V = 〈u , v∗ 〉V .

}

With this the following theorem is satisfied.

4.2 Theorem. Let V be a separable reflexive Banach space and M ⊂ V as in (4.1),
and let F : M → V ∗ with the following properties:

(1) Boundedness. The map F is bounded on bounded subsets of M .

(2) Continuity property. The map F satisfies condition 4.1.

(3) Coercivity. For some ū ∈M
〈u− ū , F (u) 〉V
‖u− ū‖V

→∞ for u ∈M, ‖u− ū‖V →∞.

Under these assumptions there exists u ∈M , so that

〈u− v , F (u) 〉V ≤ 0 for all v ∈M. (4.3)
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Note: The condition, that ū belongs to M , in general is necessary for the theorem.

We call (4.3) the variational inequality for F with respect to M .

Proof. A proof can be found in [17, Chap. 3], [2], [22, Kap. 3]. A version of this
theorem can be found in [8, Theorem (5.2.3)].

There are many examples, which fall under this theorem, the standard ones
are monotone operators and compact perturbations of monotone operators. The
condition 4.2(2), that is 4.1, is usually connected with the name “pseudomonotone
operators”, although the definition of pseudomonotone is a little bit different, but
it is equivalent under the complete assumptions of 4.2.

5. Time discrete problem. We consider a Hilbert space H and a Banach space
V as in the introduction, that is (1.2),

V ⊂ H, IdV : V → H continuous, (5.1)

is satisfied. For more general V we refer to 13.2.
The approximative problem is given for discrete times ti with ti < ti+1. For

simplicity we consider the case of a constant time step h > 0, that is,

ti = ih for i ∈ IN. (5.2)

The constraint is approximated by

M i ⊂ V nonempty closed convex, (5.3)

where here the set M i may change in time. On M i an “elliptic” operator is given
by

Ai : M i → V ∗, (5.4)

where this map is defined recursively, that is, it may depend on the solution for
smaller i. The “parabolic” part is given by a map

b = ∇ψ with ψ : H → IR convex and continuously differentiable. (5.5)

We approximate the parabolic problem by a time discrete version, that is we replace
the time derivative of b(u) by time differences

t 7→ 1

h
(b(u(t))− b(u(t− h))).

Under assumptions (5.1)–(5.5) the problem is to find inductively in i a solution with
given starting value u0 ∈ H.

5.1 Time discrete problem. With u0 = u0 ∈ H find inductively for i ≥ 1
elements ui with

ui ∈M i and(
ui − v , 1

h (b(ui)− b(ui−1))
)
H

+
〈
ui − v , Ai(ui)

〉
V
≤ 0

for all v ∈M i.

(5.6)

Here ui−1, for i = 1, is the initial value u0 := u0 ∈ H, and for i ≥ 2, is the
known vector from previous time step. Thus the solution ui ∈ M i is constructed
inductively in i, therefore the operator Ai may contain also information from the
previous time steps, e.g. it may depend on ui−1.
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For the existence proof we deal with certain assumptions about the operator

u 7→ F i(u) = λId∗V (Dψ(u)−Dψ(ui−1)) +Ai(u), (5.7)

among them the continuity condition 4.1. We will show that the “parabolic” part
b = ∇ψ by assumption gives the necessary property, provided the embedding from
V into H is compact. As consequence only the map Ai : M i → V ∗ has to satisfy
4.1. The map F i satisfies the following

5.2 Remark. It holds for u ∈M i and v ∈ V〈
v , λId∗V (Dψ(u)−Dψ(ui−1)) +Ai(u)

〉
V

= λ
(
v , b(u)− b(ui−1)

)
H

+
〈
v , Ai(u)

〉
V
.

Proof. ( v , b(u) )H = ( v , ∇ψ(u) )H = Dψ(u)(v) = 〈 v , Id∗V Dψ(u) 〉V .

5.3 Lemma. Let the inclusion IdV : V → H be compact. If the map Ai : M i → V ∗

satisfies 4.1, then for all λ ∈ IR the map λId∗V (Dψ−Dψ(ui−1))+Ai satisfies condition
4.1 on M i.

Proof. We assume that 4.1 is satisfied for Ai, and we have to show that condition
4.1 for the map F i in (5.7) is true. Therefore let um, u ∈ M i with um → u weakly
in V and F i(um)→ v∗ weakly∗ in V ∗ for m→∞, and

lim sup
m→∞

〈
um , F

i(um)
〉
V
≤ 〈u , v∗ 〉V .

Since IdV : V → H is compact, hence completely continuous, it follows that um → u
strongly in H for m→∞. Since b is continuous, b(um)→ b(u) strongly in H, and
since for v ∈ V

〈 v , Id∗V Dψ(um) 〉V = 〈 v , Dψ(um) 〉H = ( v , b(um) )H ,

it follows that Id∗V Dψ(um)→ Id∗V Dψ(u) strongly in V ∗ as m→∞. Defining

ṽ∗ := v∗ − λId∗V (Dψ(u)−Dψ(ui−1))

we see that the properties of F i imply

Ai(um)→ ṽ∗ weakly∗ in V ∗ for m→∞ ,

lim sup
m→∞

〈
um , A

i(um)
〉
V
≤ 〈u , ṽ∗ 〉V .

Since it is assumed that 4.1 for the map Ai is satisfied, we conclude〈
u− v , Ai(u)− ṽ∗

〉
V
≤ 0 for all v ∈M i,

lim sup
m→∞

〈
um , A

i(um)
〉
V

= 〈u , ṽ∗ 〉V .

Inserting the definition of ṽ∗ one gets〈
u− v , F i(u)− v∗

〉
V
≤ 0 for all v ∈M i,

lim sup
m→∞

〈
um , F

i(um)
〉
V

= 〈u , v∗ 〉V .

Therefore it has been shown that condition 4.1 for the map F i is fulfilled.

Similar one can show, that property 4.1 for F i implies this property for Ai. It
is also enough to assume the boundedness condition for Ai. This is because the
following lemma holds.
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5.4 Lemma. Let IdV : V → H be compact. If b is defined as in (5.5), then b is
bounded on bounded subsets of V .

Proof. Assume this is not true. Then there is an R > 0 and um ∈ V , m ∈ IN, with
‖um‖V ≤ R and ‖b(um)‖H →∞ in H as m→∞. Since IdV : V → H is compact,
hence completely continuous, um has in H a convergent subsequence, that is there
is u ∈ H with um → u in H for a subsequence m → ∞. Since b is continuous, we
conclude b(um)→ b(u) for the subsequence, a contradiction.

We can now formulate the theorem for time discrete solutions.

5.5 Theorem. Let (5.1)–(5.5) be satisfied and IdV : V → H be compact. Further
assume

(1) Boundedness. The map Ai is bounded on bounded subsets of M i.

(2) Continuity condition.The map Ai : M i → V ∗ satisfies 4.1.

(3) Coercivity. There exists a λ > 0 independent of i, and a ūi ∈M i, such that

λ
(
u− ūi , b(u)

)
H

+
〈
u− ūi , Ai(u)

〉
V

‖u− ūi‖V
→∞

for u ∈M i with
∥∥u− ūi∥∥

V
→∞.

(5.8)

Under these assumptions it follows, that for given u0 ∈ H and for h ≤ 1
λ the time

discrete problem 5.1 has a solution.

Proof. Let u0 be as in 5.1 and i ≥ 1. Because of remark 5.2 the problem in 5.1 can
be formulated as 〈

u− v , F ih(u)
〉
V
≤ 0 for all v ∈M i (5.9)

with u ∈M i and with F ih : M i → V ∗ given by

F ih(u) :=
1

h
Id∗V (Dψ(u)−Dψ(ui−1)) +Ai(u).

Property (1) implies 4.2(1) for F ih by using 5.4. Since (2) is satisfied, the statement
5.3 shows that 4.2(2) is valid for the map F ih. Since ψ is convex, the first term on
the right side of

u 7→ F ih(u) =

(
1

h
− λ

)
Id∗V (Dψ(u)−Dψ(ui−1)) + F 1

λ
(u)

is monotone in u, if h ≤ 1
λ , where λ > 0 is the number for which (5.8) holds. Hence

the coercivity 4.2(3) for F ih is satisfied, since (5.8) is satisfied for F 1
λ

. Consequently

there is a solution of the variational inequality (5.9).

Alternatively, the time discrete solution in 5.1 can be formulated as in 5.6. For
this we construct for each sequence uj ∈ H with j ∈ IN ∪ {0} a step function in
time by

uh(t) :=

{
ui for (i− 1)h < t ≤ ih, i ∈ IN,

u0 for t ≤ 0,

Mh(t) := M i for (i− 1)h < t ≤ ih, i ∈ IN.

(5.10)
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Similar one defines the elliptic operator

Ah(t, u) :=

{
Ai(u) for (i− 1)h < t ≤ ih, i ∈ IN,

0 for t ≤ 0.
(5.11)

With these definitions equation 5.1 becomes

5.6 Time discrete problem. Find a step function uh with

uh(t) = u0 for t < 0, uh(t) ∈Mh(t) for t > 0,(
uh(t)− v , 1

h (b(uh(t))− b(uh(t− h)))
)
H

+ 〈uh(t)− v , Ah(t, uh(t)) 〉V ≤ 0 for t > 0 and for v ∈Mh(t).

(5.12)

By a step function we mean a function as in (5.10).

6. The main theorem. In the following we describe the main theorem of this
paper. Given a Hilbert space H and a Banach space V such that (V,H, V ∗) is a
Gelfand triple satisfying V ↪→ H ↪→ V ∗. As pointed out in section 13, we can work
with a special case and can assume that

V ⊂ H with a continuous mapping IdV : V → H. (6.1)

Besides these spaces we consider a set

M = {u ∈ Lp([0, T ];V ) ; B0(u) ∈ L∞([0, T ]),

u(t) ∈M for almost all t}
(6.2)

with a time independent constraint

M ⊂ V nonempty, closed, and convex. (6.3)

We assume that the “parabolic part” of our problem is given by a map

b : H → H monotone and continuous, in fact

b = ∇ψ, ψ : H → IR convex and continuously differentiable,
(6.4)

where the functional B0 in the above definition is given by

B0(z) = ψ∗(b(z)) + ψ(0),

see the definition in 3.6. On M we denote the “elliptic part” of the problem by

A :M→ Lp
∗
([0, T ];V ∗),

A(u)(t) = A(t, u(t)) with A(t, •) : M → V ∗.
(6.5)

We shall present some illustrating examples in section 11, in particular 11.1.
According to the continuity condition in 4.1 we assume for the parabolic problem

in this section, that a time version of this condition is satisfied.
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6.1 Continuity condition. Let um, u ∈ Lp([0, T ];V ) and v∗ ∈ Lp∗([0, T ];V ∗) with

um(t), u(t) ∈M for almost all t ∈]0, T [ and

um → u weakly in Lp([0, T ];V ) for m→∞,
{B(um) ; m ∈ IN} bounded in L∞([0, T ]; IR) and

b(um)→ b(u) strongly in L1([0, T ];H) for m→∞,
A(um)→ v∗ weakly in Lp

∗
([0, T ];V ∗) for m→∞, and

lim sup
m→∞

∫ T

0

〈um(t) , A(um)(t) 〉V dt ≤
∫ T

0

〈u(t) , v∗(t) 〉V dt,


then 

∫ T

0

〈u(t)− v(t) , A(u)(t)− v∗(t) 〉V dt ≤ 0

for all v ∈ Lp([0, T ];V ) with v(t) ∈M for almost all t , and

lim sup
m→∞

∫ T

0

〈um(t) , A(um)(t) 〉V dt =

∫ T

0

〈u(t) , v∗(t) 〉V dt.


We mention, that by (3.7) the condition that B(um) ∈ L∞([0, T ]) are bounded

implies also that b(um) ∈ L∞([0, T ];H) are bounded.
With this assumption we can prove the following existence theorem, where the

structure of the theorem is the same as in 5.5. We mention, that in concrete cases the
proof that A maps into Lp

∗
([0, T ];V ∗) usually immediately gives the boundedness

condition 6.2(1).

6.2 Existence theorem. Let H be a Hilbert space and V a separable reflexive
Banach space as in (6.1) and with a compact embedding IdV : V → H. and let M
as in (6.3). Moreover, let A : M→ Lp

∗
([0, T ];V ∗) as in (6.5), and let b : H → H

as in (6.4), with the following properties:

(1) Boundedness. A maps sets inM, which are bounded in the L∞([0, T ])-norm
of B0 and bounded in the Lp([0, T ];V )-norm, into bounded sets of Lp

∗
([0, T ];V ∗).

(2) Continuity condition. A satisfies the condition 6.1.

(3) Coercivity. For almost all t ∈]0, T [

〈u− ū , A(t, u) 〉V ≥ c0‖u− ū‖
p
V − C0Bū(u)−G0(t)

for all u ∈M . Here ū ∈M and G0 ∈ L1([0, T ]), and c0 > 0 and C0 are constants.

Then there exist solutions of the “evolution problem”, that is for given u0 ∈
closH (M) there is a u ∈ Lp([0, T ];V ) with

u(t) ∈M for almost all t,

Bū(u(t̄))−Bū(u0) + ( ū− v(t̄) , b(u(t̄))− b(u0) )H

+

∫ t̄

0

(
− ( ∂t(ū− v)(t) , b(u(t))− b(u0) )H

+ 〈u(t)− v(t) , A(t, u(t)) 〉V
)

dt ≤ 0

for almost all t̄ ∈]0, T [,


and this for all v ∈ C∞([0, T ];V ) with v(t) ∈M for almost all t.

(6.6)
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Proof. The parabolic terms in the solution property in (6.6) we denote as

Φū(u, v)(t̄) := Bū(u(t̄))−Bū(u0) + ( ū− v(t̄) , b(u(t̄))− b(u0) )H

−
∫ t̄

0

( ∂t(ū− v(t)) , b(u(t))− b(u0) )H dt,
(6.7)

see definition 8.1. It is used in the proof the theorem in section 10.

In the special case that the set M ⊂ V is an affine space, that is the constraints
are defined by equations only, the existence theorem has the following form.

6.3 Existence theorem. Let H be a Hilbert space and V a separable reflexive
Banach space as in (6.1) and with a compact embedding IdV : V → H. Further,
let M ⊂ V be a nonempty closed affine set, M and A as in (6.3) and (6.5), and
b : H → H as in (6.4), with the assumptions 6.2(1)–6.2(3).

Then there exist solutions of the “evolution equation”, that is if u0 ∈ closH (M)
there is a u ∈ Lp([0, T ];V ) with

u(t) ∈M for almost all t,
∫ T

0

(
− ( ∂tξ(t) , b(u(t))− b(u0) )H

+ 〈 ξ(t) , A(t, u(t)) 〉V
)

dt = 0


for all ξ ∈ C∞0 ([0, T [;V ) with ξ(t) ∈M1 for all t.

(6.8)

Here M1 ⊂ V is the subspace, such that M = u1 +M1 for every u1 ∈M .

The proof of this statement uses the general existence theorem.

Proof. In 6.2 we have proved the inequality, using the notation in (6.7),

Φū(u, v)(t̄) +

∫ t̄

0

〈u(t)− v(t) , A(t, u(t)) 〉V dt ≤ 0

for all v ∈ C∞([0, T ];V ) which satisfies v(t) ∈M for all t. Here M now is an affine
subspace contained in V . It follows that this inequality then also holds for all

v ∈W 1,p(]0, T [;M) ⊂W 1,1(]0, T [;H) ∩ Lp(]0, T [;M).

Now u0 ∈ closH (M), hence there are u0ε ∈ M so that u0ε → u0 as ε → 0 in H.
Then define uδε ∈W 1,p(]0, T [;M) as in 8.3 and let

v := uδε − ξ ∈W 1,p(]0, T [;M)

with ξ ∈ W 1,∞(]0, T [;V ) and ξ(t) ∈ M1. Since t 7→ A(t, u(t)) is in Lp
∗
(]0, T [;V ∗)

and since uδε → u as δ → 0 in Lp(]0, T [;V ), we get∫ t̄

0

〈u(t)− v(t) , A(t, u(t)) 〉V dt =

∫ t̄

0

〈u(t)− uδε(t) + ξ(t) , A(t, u(t)) 〉V dt

−→
∫ t̄

0

〈 ξ(t) , A(t, u(t)) 〉V dt.
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We also get

Φū(u, v)(t̄) = Φū(u, uδε − ξ)(t̄)
= Bū(u(t̄))−Bū(u0)

+ ( ū− uδε(t̄) + ξ(t̄) , b(u(t̄))− b(u0) )H

−
∫ t̄

0

( ∂t(ū− uδε + ξ)(t) , b(u(t))− b(u0) )H dt

= Φū(u, uδε)(t̄)

+ ( ξ(t̄) , b(u(t̄))− b(u0) )H

−
∫ t̄

0

( ∂tξ(t) , b(u(t))− b(u0) )H dt.

Since lim infε→0 lim infδ→0 Φū(u, uδε)(t̄) ≥ 0 for almost all t̄ > 0 we obtain

( ξ(t̄) , b(u(t̄))− b(u0) )H

−
∫ t̄

0

( ∂tξ(t) , b(u(t))− b(u0) )H dt+

∫ t̄

0

〈 ξ(t) , A(t, u(t)) 〉V dt ≤ 0.

This is obviously equivalent to the assertion. The left side is a linear form in ξ.
Now we can replace ξ by −ξ to obtain that the left side equals zero. If we now
restrict ξ ∈ C∞0 ([0, T [;M1), that is with compact support in [0, T [, then ξ vanishes
in a neighbourhood of T , and therefore one chooses t̄ close to T in order to get∫ T

0

(−∂tξ(t) , b(u(t))− b(u0) )H dt+

∫ T

0

〈 ξ(t) , A(t, u(t)) 〉V dt = 0.

7. Parabolic estimates. We treat here the case of a constant constraint

Mh(t) = M i = M ⊂ V nonempty, closed and convex. (7.1)

For sets, which are not constant in time, additional terms will occur in the following
lemmata. To be precise, let us consider solutions

uh(t) = u0 ∈ H for t < 0,

uh(t) ∈M, w∗h(t) ∈ V ∗ for t > 0, with(
uh(t)− v , 1

h (b(uh(t))− b(uh(t− h)))
)
H

+ 〈uh(t)− v , w∗h(t) 〉V ≤ 0

for t > 0 and for v ∈M.

(7.2)

These elements can be given by different circumstances such as the time discrete
solution with w∗h(t) = Ah(t, uh(t)). We assume that the quantities in (7.2) are step
functions in time, that is in the following computations (5.10) is assumed, which
means

uh(t) =

{
ui for (i− 1)h < t ≤ ih, i ∈ IN,

u0 for − h < t ≤ 0,

w∗h(t) = w∗i for (i− 1)h < t ≤ ih, i ∈ IN.

(7.3)

For the convergence of the time discrete solutions we have to show estimates which
are independent of h. The first basic estimate is the
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7.1 Energy estimate. Let uh and w∗h as in (7.2). Then we conclude, if ū is a step
function, and if t̄ is a multiple of h,

Bū(t̄)(uh(t̄)) +

∫ t̄

0

〈uh(t)− ū(t) , w∗h(t) 〉V dt

+

∫ t̄

0

1

h
Eψ(uh(t), uh(t− h), b(uh(t− h))) dt

≤ Bū(0)(u0) +

∫ t̄

0

(
∂−ht ū(t) , b(uh(t))

)
H
,

provided ū(t) ∈M for t > 0 and ū(0) ∈ H.

If the function ū is constant, that is ū ∈ M , and if we neglect the last part on
the left side, Eψ ≥ 0, we obtain the standard version of the estimate

Bū(uh(t̄)) +

∫ t̄

0

〈uh(t)− ū , w∗h(t) 〉V dt ≤ Bū(u0). (7.4)

Proof. With (7.3) the inequality (7.2) reads(
ui − v , b(ui)− b(ui−1)

)
H

+ h
〈
ui − v , w∗i

〉
V
≤ 0

for v ∈M i and for i ∈ IN. Setting v = ūi ∈M i and summing over i = 1, . . . , k, one
gets

k∑
i=1

(
ui − ūi , u∗i − u∗i−1

)
H

+

k∑
i=1

h
〈
ui − ūi , w∗i

〉
V
≤ 0.

Here we have used the notation u∗i := b(ui). It holds(
ui , u∗i

)
H

= ψ∗(u∗i) + ψ(ui),(
ui , u∗i−1

)
H
≤ ψ∗(u∗i−1) + ψ(ui),

(7.5)

where for the inequality we also can write(
ui , u∗i−1

)
H

= ψ∗(u∗i−1) + ψ(ui)− Eψ(ui, ui−1, u∗i−1)

by taking the identity for ψ∗(u∗i−1) into account (see section 3). Therefore one
obtains

k∑
i=1

(
ui − ūi , u∗i − u∗i−1

)
H

=

k∑
i=1

((
ui , u∗i

)
H
−
(
ui , u∗i−1

)
H

)
−

k∑
i=1

(
ūi , u∗i − u∗i−1

)
H

=

k∑
i=1

(
ψ∗(u∗i)− ψ∗(u∗i−1)

)
−

k∑
i=1

(
ūi , u∗i − u∗i−1

)
H

+

k∑
i=1

Eψ(ui, ui−1, u∗i−1)

=

k∑
i=1

(
(ψ∗(u∗i)−

(
ūi , u∗i

)
H

)− (ψ∗(u∗i−1)−
(
ūi−1 , u∗i−1

)
H

)
)

+

k∑
i=1

(
ūi − ūi−1 , u∗i−1

)
H

+

k∑
i=1

Eψ(ui, ui−1, u∗i−1).



2096 HANS WILHELM ALT

Using that the first term is a telescope sum, and using the definition in 3.6, one
gets that this is

= Būk(uk)−Bū0(u0) +

k∑
i=1

h

(
1

h
(ūi − ūi−1) , u∗i−1

)
H

+

k∑
i=1

Eψ(ui, ui−1, u∗i−1).

Here in the term Bū0(u0) and in the term 1
h (ūi − ūi−1) for i = 1 the function ū0

occurs. Now rewriting terms as step functions in time, one gets the result.

The second estimate is the following

7.2 Compactness in time. Let (7.1) be satisfied, and let uh and w∗h as in (7.2)
as well as u∗h(t) = b(uh(t)). Then for t an s being a multiple of h, s = jh, we infer

Eψ∗(u
∗
h(t+ s), u∗h(t), uh(t)) ≤ s · 1

j

j∑
i=1

〈uh(t)− uh(t+ ih) , w∗h(t+ ih) 〉V .

Proof. It is assumed that t and s are multiple of h, say,

t = kh, t+ s = (k + j)h. (7.6)

As in the previous proof we write for ti = ih, i ∈ IN, problem (7.2) as

(
ui − v , u∗i − u∗i−1

)
H
≤ h

〈
v − ui , w∗i

〉
V

(7.7)

for v ∈M , where again we use the notation u∗i := b(ui).
Now choose k ∈ IN and set v = uk, and sum over i = k+ 1, . . . , k+ j. The result

is

k+j∑
i=k+1

(
ui − uk , u∗i − u∗i−1

)
H
≤

k+j∑
i=k+1

h
〈
uk − ui , w∗i

〉
V
.

Now by the identity 3.4(3) and Young’s inequality (3.2), see (7.5), we compute for
the left side

k+j∑
i=k+1

(
ui − uk , u∗i − u∗i−1

)
H

=

k+j∑
i=k+1

((
ui , u∗i

)
H
−
(
ui , u∗i−1

)
H

)
−

k+j∑
i=k+1

(
uk , u∗i − u∗i−1

)
H

≥
k+j∑
i=k+1

(
ψ∗(u∗i)− ψ∗(u∗i−1)

)
−

(
uk ,

k+j∑
i=k+1

(u∗i − u∗i−1)

)
H

= ψ∗(u∗k+j)− ψ∗(u∗k)−
(
uk , u∗k+j − u∗k

)
H

= Eψ∗(u
∗k+j , u∗k, uk)
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with Eψ∗ defined in 3.3 and since uk ∈ ∂ψ∗(u∗k), a consequence of u∗k ∈ ∂ψ(uk),
see 3.2. Thus we have shown

Eψ∗(u
∗k+j , u∗k, uk) ≤

k+j∑
i=k+1

(
ui − uk , u∗i − u∗i−1

)
H

≤
k+j∑
i=k+1

h
〈
uk − ui , w∗i

〉
V

= s · 1

j

j∑
i=1

〈
uk − uk+i , w∗k+i

〉
V
.

We rewrite this as

Eψ∗(u
∗
h(t+ s), u∗h(t), uh(t)) = Eψ∗(u

∗k+j , u∗k, uk)

≤ s · 1

j

j∑
i=1

〈
uk − uk+i , w∗k+i

〉
V

= s · 1

j

j∑
i=1

〈uh(t)− uh(t+ ih) , w∗h(t+ ih) 〉V .

This proof works for a general convex set M . If M is a subspace one obtains a
slightly better estimate.

7.3 Lemma. Let M be an affine subspace, and uh and w∗h as in (7.2). Then if t
and s are multiple of h and s = jh, we infer

(uh(t+ s)− uh(t) , b(uh(t+ s))− b(uh(t)) )H

= s

〈
uh(t)− uh(t+ s) ,

1

j

j∑
i=1

w∗h(t+ ih)

〉
V

.

Proof. As in the previous proof we know that (7.7) is satisfied, but now for an affine
subspace M , so that (

v , u∗ih − u
∗i−1
h

)
H

= −h
〈
v , w∗ih

〉
V

(7.8)

for v ∈ M1, a subspace for which M = ū1 + M1 with ū1 ∈ M . Now again choose
k ∈ IN, and sum over i = k + 1, . . . , k + j. The result is(

v , u∗k+j
h − u∗kh

)
H

= −h

〈
v ,

k+j∑
i=k+1

w∗ih

〉
V

.

Now set v = uk+j
h − ukh, and write the result in terms of functions in time, that is

t = kh, see (7.3).

8. Parabolic identity. In all theories about parabolic problems there is one equa-
tion, which plays an exceptional role, and it has to be proved for the continuous
limit problem. For some parabolic problems it is connected to an inequality, which
is postulated for the formulation of a solution. In this paper it is connected to the
following.
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8.1 Definition. Let u : [0, T ] → H be measurable, ū ∈ H, such that Bū(u) ∈
L∞([0, T ]). Assume initial data u0 ∈ H. For v ∈W 1,1(]0, T [;H) define

Φū(u, v)(t) := Bū(u(t))−Bū(u0) + ( ū− v(t) , b(u(t))− b(u0) )H

−
∫ t

0

( ∂t(ū− v)(s) , b(u(s))− b(u0) )H ds,

so that Φū(u, v) ∈ L∞([0, T ]).

Proof. We have to show that the definition is well posed. Since Bū(u) ∈ L∞([0, T ])
statement (3.7) implies b(u) ∈ L∞([0, T ];H). Then the term under the integral,
since ∂tv ∈ L1(]0, T [;H), is integrable.

The definition can also be written as

Φū(u, v)(t) =
(
Bū(u(t)) + ( ū− v(t) , b(u(t)) )H

)
−
(
Bū(u0) + ( ū− v(0) , b(u0) )H

)
−
∫ t

0

( ∂t(ū− v)(s) , b(u(s)) )H ds.

We mention, that only Bū(u) ∈ L∞([0, T ]) is assumed. The fact that u0 is a “initial
value” for u, is only determined by this definition. The term Φū(u, v) is the parabolic
term in the differential inequality (6.6). That this coincides with the parabolic term
∂tb(u) in the differential equation, is shown formally in the following lemma. The
argumentation is essentially the same as the proof in the time discrete case in 10.3.

8.2 Remark. Formally

Φū(u, v)(t̄) =

∫ t̄

0

(u(t)− v(t) , ∂tb(u(t)) )H dt

for every function u which has initial data u(0) = u0.

Proof. We write∫ t̄

0

(u(t)− v(t) , ∂tb(u(t)) )H dt

=

∫ t̄

0

(u(t)− ū , ∂tb(u(t)) )H dt+

∫ t̄

0

( ū− v(t) , ∂t(b(u(t))− b(u(0))) )H dt.

Now from 3.7

(u(t)− ū , b(u(t))− b(u(t− δ)) )H

= Bū(u(t))−Bū(u(t− δ)) + Eψ(u(t), u(t− δ),∇ψ(u(t− δ)),

and if one considers the limit δ → 0 after dividing by δ, one obtains formally

∂tBū(u) = (u− ū , ∂tb(u) )H .

Therefore the first term in the above identity is∫ t̄

0

(u(t)− ū , ∂tb(u(t)) )H dt =

∫ t̄

0

∂tBū(u(t)) dt = Bū(u(t̄))−Bū(u(0)),
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and for the second term one computes∫ t̄

0

( ū− v(t) , ∂t(b(u(t))− b(u(0))) )H dt

= ( ū− v(t̄) , b(u(t̄))− b(u(0)) )H −
∫ t̄

0

( ∂t(ū− v(t)) , b(u(t))− b(u(0)) )H dt.

Add both terms in order to get Φū(u, v)(t̄).

This statement indicates, that formally Φū(u, u) = 0. In a rigorous way this will
be proved in the following lemma.

8.3 Lemma. Let u : [0, T ] → H be measurable, ū ∈ H, such that Bū(u) ∈
L∞([0, T ]). Then

lim inf
ε→0

lim inf
δ→0

Φū(u, uδε)(t̄) ≥ 0

for almost all t̄ > 0, provided u0ε → u0 in H as ε → 0. Here uδε ∈ W 1,1(]0, T [;H)
is the function

uδε(t) :=
1

δ

∫ t

t−δ
ũε(s) ds, where ũε(t) :=

{
u(t) for t > 0,

u0ε for t < 0.

The function u0 ∈ H is in definition 8.1 of Φū.

Hint: If u ∈ Lp(]0, T [;V ) and u0ε ∈ V , then uδε ∈ W 1,p(]0, T [;V ). The function
u0 ∈ H is the initial datum.

Proof. Obviously Φū(u, uδε) is defined, since uδε ∈ W 1,1(]0, T [;H) with ∂tuδε =

∂−δt ũε, where ∂−δt is the backward differential quotient. Now by definition 8.1

Φū(u, uδε)(t̄) = Bū(u(t̄))−Bū(u0) + ( ū− uδε(t̄) , b(u(t̄))− b(u0) )H

−
∫ t̄

0

( ∂t(ū− uδε(t)) , b(u(t))− b(u0) )H dt.

We see that with discrete partial integration, defining u(t) := u0 for t < 0 and
therefore b(u(t)) = b(u0) for t < 0,∫ t̄

0

( ∂t(ū− uδε(t)) , b(u(t))− b(u0) )H dt

=

∫ t̄

0

(
∂−δt (ū− ũε(t)) , b(u(t))− b(u0)

)
H

dt

=
1

δ

( ∫ t̄

0

( ū− ũε(t) , b(u(t))− b(u0) )H dt

−
∫ t̄−δ

−δ
( ū− ũε(t) , b(u(t+ δ))− b(u0) )H dt

)
=

1

δ

∫ t̄

t̄−δ
( ū− ũε(t) , b(u(t))− b(u0) )H dt−

∫ t̄−δ

−δ

(
ū− ũε(t) , ∂+δ

t b(u(t))
)
H

dt
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=
1

δ

∫ t̄

t̄−δ
( ū− u(t) , b(u(t))− b(u0) )H dt

−
∫ t̄−δ

−δ

(
ū− u(t) , ∂+δ

t b(u(t))
)
H

dt

−1

δ

∫ 0

−δ
(u0 − u0ε , b(u(t+ δ))− b(u0) )H dt.

Here we have used that t̄− δ > 0, and that ũε(t) = u(t) for t > 0. Now, let us have
a look at each of the three terms in the above identity.

In the first term, since t 7→ b(u(t)) is in L∞([0, T ];H) by assumption and (3.7),
the integrand t 7→ ( ū− u(t) , b(u(t))− b(u0) )H is integrable. Therefore this term
converges for almost all t̄ to ( ū− u(t̄) , b(u(t̄))− b(u0) )H , a term which occurs also
in the formula for Φū(u, uδε)(t̄), hence this term cancels.

The last term is, again since t 7→ b(u(t)) is in L∞([0, T ];H),∣∣∣∣ 1

δ

∫ 0

−δ
(u0 − u0ε , b(u(t+ δ))− b(u0) )H dt

∣∣∣∣
≤ ‖u0 − u0ε‖H · ess sup

t∈[0,T ]

‖b(u(t))− b(u0)‖H → 0

as u0ε → u0 for ε→ 0.
Concerning the second term we use the inequality 3.7, that is for all t, s

(u(t)− ū , b(u(t))− b(u(s)) )H

= Bū(u(t))−Bū(u(s)) + Eψ(u(t), u(s),∇ψ(u(s)))

≥ Bū(u(t))−Bū(u(s)),

therefore with s = t+ δ

−
(
ū− u(t) , ∂+δ

t b(u(t))
)
H

= −1

δ
( ū− u(t) , b(u(t+ δ))− b(u(t)) )H

≤ 1

δ
(Bū(u(t+ δ))−Bū(u(t))) = ∂+δ

t Bū(u(t)),

and the second term becomes

−
∫ t̄−δ

−δ

(
ū− u(t) , ∂+δ

t b(u(t))
)
H

dt ≤
∫ t̄−δ

−δ
∂+δ
t Bū(u(t)) dt

=

∫ t̄

0

∂−δt Bū(u(t)) dt =
1

δ

∫ t̄

t̄−δ
Bū(u(t)) dt−Bū(u0).

Since t 7→ Bū(u(t)) is integrable, this converges for a subsequence δ → 0 (a sub-
sequence of an a-priori given sequence δ → 0, see the remark at the end of this
proof) for almost all t̄ to Bū(u(t̄))−Bū(u0), a term which occurs in the formula for
Φū(u, uδε)(t̄).

Remark: We mention that for the sequence δ → 0 one has to apply a certain trick.
First one chooses a subsequence so that the limit with respect to this subsequence
is the limes inferior in the assertion. With this subsequence one has to go into the
above proof with the choice of a subsubsequence.
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9. Compactness theorem. The main statement of this section is the compactness
result in 9.3, whose proof is based on the corresponding result in [5]. Before we show
this we present a useful lemma.

9.1 Lemma. Let t̄ = mh and assume uh are step functions, see (5.10). If∫ t̄−s

0

e(uh(t+ s), uh(t)) ≤ C · ω(s)

for s > 0 which are multiple of h, then this inequality holds for any real s > 0. Here
ω is a concave function and e : H ×H → IR continuous.

The lemma applies to our function ω(s) = s. By the way, the property ω(0) = 0
is assumed in 9.3.

Proof. Let s be arbitrary, 0 < s < t̄, and choose j ∈ IN with

s = jh+ σ, 0 ≤ σ < h,

so that (
1− σ

h

)
· jh+ σ

h · (j + 1)h = s. (9.1)

Then if t = (i− 1)h+ τ , 0 < τ ≤ h, we compute by (5.10) for step functions uh

uh(t+ s) =

{
ui+j if σ + τ ≤ h,
ui+j+1 if σ + τ > h,

and therefore∫ mh−s

0

e(uh(t+ s), uh(t)) dt

=

m−j∑
i=1

∫ ih−σ

(i−1)h

e(uh(t+ s), uh(t)) dt+

m−j−1∑
i=1

∫ ih

ih−σ
e(uh(t+ s), uh(t)) dt

=

m−j∑
i=1

(h− σ)e(ui+j , ui) +

m−j−1∑
i=1

σe(ui+j+1, ui)

=
(

1− σ

h

)∫ mh−jh

0

e(uh(t+ jh), uh(t)) dt

+
σ

h

∫ mh−(j+1)h

0

e(uh(t+ (j + 1)h), uh(t)) dt

≤ C ·
((

1− σ

h

)
· ω(jh) +

σ

h
· ω((j + 1)h)

)
≤ C · ω(s)

by (9.1), since ω is concave.

The following statement we will apply in the main proof.
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9.2 Theorem. Let H be a Hilbert space and V ⊂ H a Banach space with compact
embedding IdV : H → V . Further, let

b = ∇ψ : H → H

as in (6.4). Then for R > 0 there exist a continuous function ωR : [0,∞[→ [0,∞[
with ωR(0) = 0 so, that for all δ > 0∥∥u1

∥∥
V
≤ R,

∥∥u2
∥∥
V
≤ R, Eψ∗(b(u

1), b(u2), u2) ≤ δ (9.2)

implies ∥∥b(u1)− b(u2)
∥∥
H
≤ ε (9.3)

with ε := ωR(δ).

Proof. The function ωR can be constructed, if for every ε > 0 there exist δ > 0 such
that (9.2) implies (9.3). Thus we have to show

∀ R > 0 ∀ ε > 0 ∃ δ > 0 : ( (9.2) implies (9.3) ) .

Assume this is not true. This is equivalent to

∃ R > 0 ∃ ε > 0 ∀ δ > 0 : ( (9.2) and not (9.3) ) .

Let such numbers R > 0 and ε > 0 be given. Hence for small δ > 0 there are
u1
δ , u

2
δ ∈ V with

∥∥u1
δ

∥∥
V
≤ R,

∥∥u2
δ

∥∥
V
≤ R, and Eψ∗(b(u

1
δ), b(u

2
δ), u

2
δ) ≤ δ, but∥∥b(u1

δ)− b(u2
δ)
∥∥
H
> ε. (9.4)

The boundedness in V and the compactness of the embedding V ↪→ H imply that
there are u1, u2 ∈ H with u1

δ → u1 and u2
δ → u2 in H for a subsequence δ → 0. Since

b is continuous it follows for this subsequence that b(u1
δ)→ b(u1) and b(u2

δ)→ b(u2)
in H. Similarly since ψ is continuous we obtain ψ(u1

δ)→ ψ(u1) and ψ(u2
δ)→ ψ(u2)

in IR. Hence by 3.5

δ ≥ Eψ∗(b(u
1
δ), b(u

2
δ), u

2
δ) = Eψ(u2

δ , u
1
δ , b(u

1
δ))

= ψ(u2
δ)− ψ(u1

δ) +
(
u1
δ − u2

δ , b(u
1
δ)
)
H

→ ψ(u2)− ψ(u1) +
(
u1 − u2 , b(u1)

)
H

= Eψ(u2, u1, b(u1)) ≥ 0

as δ → 0. It follows that

0 = Eψ(u2, u1, b(u1)) = ψ(u2)− ψ(u1) +
(
u1 − u2 , b(u1)

)
H
. (9.5)

Besides this we compute for every v ∈ H
0 ≤ Eψ(u2 + v, u1, b(u1))

= ψ(u2 + v)− ψ(u1) +
(
u1 − u2 − v , b(u1)

)
H

= ψ(u2 + v)− ψ(u2)−
(
v , b(u1)

)
H

+ Eψ(u2, u1, b(u1))

= ψ(u2 + v)− ψ(u2)−
(
v , b(u1)

)
H

by inserting the identity (9.5). We get

0 ≤ ψ(u2 + v)− ψ(u2)−
(
v , b(u1)

)
H

for all v ∈ H, that is
b(u1) ∈ ∂ψ(u2) = {b(u2)} ,

since ψ is differentiable. We conclude b(u1) = b(u2) and therefore by (9.4)

ε <
∥∥b(u1

δ)− b(u2
δ)
∥∥
H
→
∥∥b(u1)− b(u2)

∥∥
H

= 0

as δ → 0, a contradiction.
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With this we are able to prove the main result.

9.3 Compactness result. Let V be a separable reflexive Banach space and H
a Hilbert space with compact embedding IdV : H → V . Further, let p ∈]1,∞[,
t0 < t1, and

b = ∇ψ : H → H

as in (6.4) (see also (5.5)). For C > 0 let

KC :=
{

u ∈ Lp([t0, t1];V ) ; ‖u‖pLp([t0,t1];V ) ≤ C,

ess sup
t∈]t0,t1[

B0(u(t)) ≤ C,

∀s ∈ [0, t1 − t0] :

∫ t1−s

t0

Eψ∗(b(u(t+ s)), b(u(t)), u(t)) dt ≤ C · ω(s)
}
.

Here ω is continuous with ω(0) = 0. Then

{b(u) ; u ∈ KC} is precompact in L1([t0, t1];H).

Proof part 1. We prove that

sup
u∈KC

∫ t1−s

t0

‖b(u(t+ s))− b(u(t))‖H dt→ 0 as s→ 0.

For this define

T sR(u) :=
{

t ∈ [t0, t1 − s] ; ‖u(t)‖pV ≤ R
p and ‖u(t+ s)‖pV ≤ R

p

and
1

ω(s)
Eψ∗(b(u(t+ s)), b(u(t)), u(t)) ≤ Rp

}
,

(9.6)

where we assume that ω(s) 6= 0. Then for u ∈ KC∫ t1−s

t0

(
‖u(t)‖pV + ‖u(t+ s)‖pV +

1

ω(s)
Eψ∗(b(u(t+ s)), b(u(t)), u(t))

)
dt ≤ 3C.

Considering the integrand on [t0, t1 − s] \ T sR(u) we see that

Rp · L1([t0, t1 − s] \ T sR(u)) ≤ 3 · C , (9.7)

therefore the Lebesgue measure of the set [t0, t1 − s] \ T sR(u) is estimated by a
constant depending on R alone. By (3.7) we compute for u ∈ KC

‖b(u(t))‖H ≤ C1 := C + C̃1,0 for almost all t ∈ [t0, t1]. (9.8)

Then by 9.2 and (9.8)

‖b(u(t+ s))− b(u(t))‖H ≤

{
ωR(ω(s) ·Rp) for t ∈ T sR(u),

2 · C1 for t ∈ [t0, t1 − s] \ T sR(u),

and integrating this gives∫ t1−s

t0

‖b(u(t+ s))− b(u(t))‖H dt

≤ (t1 − t0) · ωR(ω(s) ·Rp) + 2 · C1 ·
3 · C
Rp

.

The right side is independent of u. First we choose R large enough, so that the
second term on the right becomes small, and then s small, so that the first term is
small. It follows that the integral is small uniformly in u ∈ KC .
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Proof part 2. We prove that∑
i≤k

1

δ

∫ t0+iδ

t0+(i−1)δ

∫ t0+iδ

t0+(i−1)δ

‖b(u(t))− b(u(s))‖H dtds

≤ 2

δ

∫ δ

0

(∫ t1−s

t0

‖b(u(t))− b(u(t+ s))‖H dt

)
ds ≤ 2 · εδR

with

εδR := (t1 − t0) · ωR(ω(δ) ·Rp) + 2 · C1 ·
3 · C
Rp

,

if both ωR and ω are assumed to be concave and monotone, and of course ωR(0) = 0
and ω(0) = 0. The estimate is true for every time interval [0, δ] with

δ =
t1 − t0
k

and k ∈ IN. (9.9)

Indeed∑
i≤k

1

δ

∫ t0+iδ

t0+(i−1)δ

∫ t0+iδ

t0+(i−1)δ

‖b(u(t))− b(u(s))‖H dtds

=
∑
i≤k

1

δ

∫ δ

0

∫ δ

0

‖b(u(t0 + (i− 1)δ + s1))− b(u(t0 + (i− 1)δ + s2))‖H ds2 ds1

= 2 ·
∑
i≤k

1

δ

∫ δ

0

∫ δ

s1

‖b(u(t0 + (i− 1)δ + s1))− b(u(t0 + (i− 1)δ + s2))‖H ds2 ds1

= 2 ·
∑
i≤k

1

δ

∫ δ

0

∫ δ−s1

0

‖b(u(t0 + (i− 1)δ + s1))− b(u(t0 + (i− 1)δ + s1 + s))‖H
·dsds1

≤ 2

δ

∫ t1

t0

∫ min(δ,t1−t)

0

‖b(u(t))− b(u(t+ s))‖H dsdt

≤ 2

δ

∫ δ

0

∫ t1−s

t0

‖b(u(t))− b(u(t+ s))‖H dtds .

This gives the result.

Proof main part. We choose a time step δ > 0 as in (9.9) and approximate each
function by a step function as follows. We define

β(s, v)(t) :=

k∑
i=1

b(v(t0 + (i− 1)δ + s))X]t0+(i−1)δ,t0+iδ](t)

for v ∈ Lp([t0, t1];H) and s ∈ [0, t0 − t1] and we approximate

b(u) by β(s, uδR)

for u ∈ KC and a suitable s which we choose later. Here

uδR(t) :=

{
u(t) if t ∈ T δR(u),

ū elsewhere,
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where it is assumed that ū ∈ KC . We compute∫ t1

t0

∥∥b(u(t))− β(s, uδR)(t)
∥∥
H

dt

=

∫ t1

t0

∥∥b(u(t))− b(uδR(t))
∥∥
H

dt+

∫ t1

t0

∥∥b(uδR(t))− β(s, uδR)(t)
∥∥
H

dt

and by (9.8) and (9.7)∫ t1

t0

∥∥b(u(t))− b(uδR(t))
∥∥
H

dt =

∫
[t0,t1]\T δR(u)

‖b(u(t))− b(ū)‖H dt

≤ 2 · C1 · L1([t0, t1] \ T δR(u)) = 2 · C1 ·
3 · C
Rp

:= εR ,

hence ∫ t1

t0

∥∥b(u(t))− β(s, uδR)(t)
∥∥
H

dt

= εR +

∫ t1

t0

∥∥b(uδR(t))− β(s, uδR)(t)
∥∥
H

dt .

Integrating over the offset s we obtain

1

δ

∫ δ

0

∫ t1

t0

∥∥b(u(t))− β(s, uδR)(t)
∥∥
H

dtds

= εR +
1

δ

∫ δ

0

∫ t1

t0

∥∥b(uδR(t))− β(s, uδR)(t)
∥∥
H

dtds

≤ εR +
1

δ

∫ δ

0

k∑
i=1

∫ t0+iδ

t0+(i−1)δ

∥∥b(uδR(t))− b(uδR(t0 + (i− 1)δ + s))
∥∥
H

dtds

= εR +
1

δ

k∑
i=1

∫ t0+iδ

t0+(i−1)δ

∫ t0+iδ

t0+(i−1)δ

∥∥b(uδR(t))− b(uδR(s))
∥∥
H

dtds.

By setting Ti := [t0 + (i− 1)δ, t0 + iδ] ∩ T δR(u) this is

= εR +
2

δ

k∑
i=1

∫
[t0+(i−1)δ,t0+iδ]\Ti

∫
Ti
‖b(u(t))− b(ū)‖H dtds

+
1

δ

k∑
i=1

∫
Ti

∫
Ti
‖b(u(t))− b(u(s))‖H dtds

= εR + 2

k∑
i=1

∫
[t0+(i−1)δ,t0+iδ]\Ti

(
1

δ

∫
Ti
‖b(u(t))− b(ū)‖H dt

)
ds

+
1

δ

k∑
i=1

∫
Ti

∫
Ti
‖b(u(t))− b(u(s))‖H dtds

≤ εR + 2 · L1([t0, t1] \ T δR(u)) · 2 · C1

+
1

δ

k∑
i=1

∫ t0+iδ

t0+(i−1)δ

∫ t0+iδ

t0+(i−1)δ

‖b(u(t))− b(u(s))‖H dtds

≤ 3 · εR + 2 · εδR
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by the above estimate. Hence

sup
u∈KC

1

δ

∫ δ

0

∫ t1

t0

∥∥b(u(t))− β(s, uδR)(t)
∥∥
H

dt ≤ 3 · εR + 2 · εδR ≤ ε, (9.10)

if R is large and then δ is small. We then can choose an s = su such that for u ∈ KC∫ t1

t0

∥∥b(u(t))− β(su, u
δ
R)(t)

∥∥
H

dt ≤ 2 · ε. (9.11)

It follows that the functions b(u) lie in an 2ε-neighbourhood of the step functions
β(su, u

δ
R),

{b(u) ∈ L1([t0, t1];H) ; u ∈ KC}
⊂ B2ε

(
{β(su, u

δ
R) ∈ L1([t0, t1];H) ; u ∈ KC , R large, δ small}

)
in the topology with respect to L1([t0, t1];H).

Proof last part. From the previous proof it follows, that the precompactness of

{b(u) ; u ∈ KC} ⊂ L1([t0, t1];H)

follows from the precompactness of

{β(su, u
δ
R) ; u ∈ KC , R large, δ small} ⊂ L1([t0, t1];H),

since the first set is contained in an 2ε-neigbourhood of the second set, ε an arbitrary
small number. The second set depends on ε, which is allowed. Indeed this is true,
since R was chosen large enough and δ small enough, both depending on ε.

Therefore the precompactness of the second set in L1([t0, t1];H) has to be shown.
Since these are step functions, we have to show the precompactness of the steps in
H, that is the precompactness of

{b(uδR(t0 + (i− 1)δ + su)) ; u ∈ KC , i ≤ k, R large, δ small} ⊂ H.

We show instead the precompactness of the larger set

{b(u) ; u ∈ V, ‖u‖V ≤ R} ⊂ H

for large R. But this follows from the compactness of the embedding V ↪→ H. Then
bounded sets in V are precompact in H, and the continuous function b transforms
this to a precompact set in H.

The compactness of the functions b(uh) in L1([0, T ];H) implies, that for a se-
quence h → 0 these functions have a strong limit b∗ in L1([0, T ];H). Then, if the
functions uh already have a weak limit u, one can apply the following lemma, whose
proof is classical. It shows that the limits satisfy b∗ = b(u). Note, that this is true,
even if b is not strictly increasing, however it must be monotone.

9.4 Lemma. If um, u ∈ Lp([0, T ];V ) and b∗ ∈ L1([0, T ];H) with

um → u weakly in Lp([0, T ];V ) as m→∞,
b(um)→ b∗ strongly in L1([0, T ];H) as m→∞,

then

b∗ = b(u).
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Proof. Define R : Lp([0, T ];H)× L1([0, T ];H)→ L∞([0, T ];H) by

R(v, β)(t) :=
b(v(t))− β(t)

1 + ‖b(v(t))‖H + ‖β(t)‖H
.

We want to show, that R(u, b∗) = 0, that is b(u) = b∗. Now it follows from the
assumption, that for a subsequence b(um(t))→ b∗(t) strongly in H for almost all t
as m→∞. Therefore (for this subsequence)

R(v, b(um))(t)→ R(v, b∗)(t) strongly in H as m→∞. (9.12)

To continue, we have to use the standard monotonicity argument for b, which implies

0 ≤ ( v(t)− um(t) , b(v(t))− b(um(t)) )H ,

and therefore 0 ≤ ( v(t)− um(t) , R(v, b(um))(t) )H for almost all t. It follows that

0 ≤
∫ T

0

( v(t)− um(t) , R(v, b(um))(t) )H dt

=

∫ T

0

( v(t) , R(v, b(um))(t) )H dt−
∫ T

0

(um(t) , R(v, b(um))(t) )H dt.

Since R(v, b(um)) is bounded in L∞([0, T ];H), it follows from (9.12) for every q <
∞, that R(v, b(um))→ R(v, b∗) strongly in Lq([0, T ];H) for m→∞. Setting q = p∗

we see that∫ T

0

( v(t) , R(v, b(um))(t) )H dt→
∫ T

0

( v(t) , R(v, b∗)(t) )H dt as m→∞

for v ∈ Lp([0, T ];H). Now to the convergence of the second term. Since um → u
weakly in Lp([0, T ];V ), which is continuously embedded into Lp([0, T ];H), and since
R(v, b(um))→ R(v, b∗) strongly in Lp

∗
([0, T ];H) for m→∞, it follows∫ T

0

(um(t) , R(v, b(um))(t) )H dt→
∫ T

0

(u(t) , R(v, b∗)(t) )H dt as m→∞.

Altogether we conclude

0 ≤
∫ T

0

( v(t)− u(t) , R(v, b∗)(t) )H dt

for all v ∈ Lp([0, T ];H). We apply now a Minty type argument, that is we replace
v by u+ ε(v − u) and letting ε↘ 0, to obtain

0 ≤
∫ T

0

( v(t)− u(t) , R(u, b∗)(t) )H dt

for all v ∈ Lp([0, T ];H). Since ṽ = v − u is an arbitrary element of Lp([0, T ];H)
this gives

0 ≤
∫ T

0

( ṽ(t) , R(u, b∗)(t) )H dt

for all ṽ ∈ Lp([0, T ];H), and therefore also

0 =

∫ T

0

( ṽ(t) , R(u, b∗)(t) )H dt,

which finally implies R(u, b∗) = 0 almost everywhere.
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Having proved that b∗ = b(u) it follows that u ∈M, provided um ∈M and t 7→
B0(um(t)) is bounded in L∞([0, T ]) uniformly in m. This sequentially closedness is
also true under some more general convergence conditions as shown below.

9.5 Lemma. If um, u ∈ Lp([0, T ];V ) and

um → u weakly in Lp([0, T ];V ) as m→∞,
b(um)→ b(u) weakly in L2([0, T ];H) as m→∞,

B0(um) bounded in L∞([0, T ]),

then

um ∈M for m ∈ IN implies u ∈M.

Proof. By the Lemma of Mazur u is the strong limit of elements in

conv{um ∈ V ; m ∈ IN}.
This implies that the weak convergence in Lp([0, T ];V ) lets the set

{u ∈ Lp([0, T ];V ) ; u(t) ∈M for almost all t},
which is closed and convex, invariant. On the other hand, by the same reason
w := b(u) is the strong limit in L2([0, T ];H) of finite sums∑

m∈IN

αmwm → w,
∑
m∈IN

αm = 1, αm ≥ 0

with wm := b(um). Since ψ∗ is lower semicontinuous, one concludes

ψ∗(w(t)) = ψ∗

(
lim
m→∞

∑
m∈IN

αmwm(t)

)
≤ lim
m→∞

ψ∗

(∑
m∈IN

αmwm(t)

)
and the convexity of ψ∗ implies, that

ψ∗

(∑
m∈IN

αmwm(t)

)
≤
∑
m∈IN

αmψ
∗(wm(t)) ≤ C − ψ(0),

since ψ∗(wm(t)) = B0(um(t)) − ψ(0) and B0(um(t)) ≤ C for some C. Since
ψ∗(w(t)) = B0(u(t))− ψ(0) we conclude B0(u) ∈ L∞([0, T ]).

10. Convergence proof. In the following we give a convergence proof of the main
theorem of this paper, formulated in 6.2. We consider the case of a time indepen-
dent constraint M ⊂ V , and the boundedness condition 6.2(1) and the continuity
condition in 6.1 are satisfied. Besides this we assume the coerciveness in 6.2(3).

First we show that we have approximative solutions of the time discrete problem.
We define the time discrete operator to the map (s, z) 7→ A(s, z) from (6.5) by

Ah(t, z) :=
1

h

∫ ih

(i−1)h

A(s, z) ds for (i− 1)h < t ≤ ih. (10.1)

The initial data are u0 ∈ H and b is given by (6.4). With this we show

10.1. There are solutions uh, which are step function with uh(t) = u0 for t < 0 and
uh(t) ∈M for t > 0, of the time discrete problem(

uh(t)− v , 1

h
(b(uh(t))− b(uh(t− h)))

)
H

+ 〈uh(t)− v , Ah(t, uh(t)) 〉V ≤ 0



EXISTENCE THEOREM FOR PARABOLIC SYSTEMS 2109

for v ∈M . This is true for t > 0 which are multiple of h, and then also for all t > 0.

With Ai(u) := Ah(ti, u), ti = ih, and M i = M for i ∈ IN we have to show the
assumptions in 5.5.

We want to prove 5.5(1). Let S be a bounded set in M i. Define

Si := {ui ∈ Lp([0, T ];V ) ; u ∈ S} with ui(t) :=

{
u if (i− 1)h < t ≤ ih
ū elsewhere

}
and ū an element in M . Then Si is a bounded set in Lp([0, T ];M). Since the
embedding V ↪→ H is compact, the values of u and, by 5.4, the values of b(u) both
are bounded in H for u ∈ S. It follows, by the definition in 3.6, that B0(u) are
bounded, say B0(u) ≤ R. We obtain

B0(ui(t)) =

{
B0(u) if (i− 1)h < t ≤ ih,
B0(ū) elsewhere ,

that is

‖B0(ui)‖L∞([0,T ]) ≤ max(R,B0(ū)).

Hence on Si also the L∞([0, T ])-norm of B0 is bounded. It follows from 6.2(1), that
A on Si is bounded in Lp

∗
([0, T ];V ∗), say,

R∗ ≥ ‖A(ui)‖Lp∗ ([0,T ];V ∗) =

(∫ T

0

‖A(t, ui(t))‖p
∗

V ∗ dt

) 1
p∗

≥

(∫ ih

(i−1)h

‖A(t, u)‖p
∗

V ∗ dt

) 1
p∗

≥ h−
1
p

∥∥∥∥∥
∫ ih

(i−1)h

A(t, u) dt

∥∥∥∥∥
V ∗

= h1− 1
p

∥∥∥∥∥ 1

h

∫ ih

(i−1)h

A(t, u) dt

∥∥∥∥∥
V ∗

= h
p−1
p

∥∥Ai(u)
∥∥
V ∗
.

Therefore Ai is bounded on S, which shows 5.5(1).
We want to prove 5.5(2) and we know 6.2(2), that is the continuity condition

6.1. Let a sequence be given for Ai as in 5.5(2), which is stated in 4.1, that is
um, u ∈ M i = M with um → u weakly in V and Ai(um) → v∗ weakly∗ in V ∗ for
m→∞ and such that

lim sup
m→∞

〈
um , A

i(um)
〉
V
≤ 〈u , v∗ 〉V .

We have to show, that the conclusions in 4.1 are true. Define

uim(t) :=

{
um if (i− 1)h < t ≤ ih
ū elsewhere

}
, v∗i (t) :=

{
v∗ if (i− 1)h < t ≤ ih
A(t, ū) elsewhere

}
,

and ui to u as uim to um. Then for m → ∞ it converges uim → ui weakly in
Lp([0, T ];V ), and A(uim)→ v∗i weakly∗ in Lp

∗
([0, T ];V ∗), and

lim sup
m→∞

∫ T

0

〈uim(t) , A(t, uim(t)) 〉V dt ≤
∫ T

0

〈ui(t) , v∗i (t) 〉V dt.

Since the embedding V ↪→ H is compact, um converges to u strongly in H. Since b
is continuous also b(um) → b(u) strongly in H, and by the definition 3.6 it follows
that B(um) → B(u) in IR. This implies that {B(uim) ; m ∈ IN} is bounded in
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L∞([0, T ]; IR) and that b(uim)→ b(ui) strongly in L2([0, T ];H). Thus the assump-
tions in the continuity condition 6.1 are fulfilled, hence 6.1 can be applied, and we
conclude ∫ T

0

〈ui(t)− v(t) , A(t, ui(t))− v∗i (t) 〉V dt ≤ 0 (10.2)

for all v ∈ Lp([0, T ];V ) with v(t) ∈M for almost all t and

lim sup
m→∞

∫ T

0

〈uim(t) , A(t, uim(t)) 〉V dt =

∫ T

0

〈ui(t) , v∗i (t) 〉V dt.

Plugging in the definitions for uim and ui, the last identity becomes

lim sup
m→∞

〈
um , A

i(um)
〉
V

= 〈u , v∗ 〉V .

Setting with given ṽ ∈M

v(t) =

{
ṽ if (i− 1)h < t ≤ ih
ū elsewhere

}
one obtains similarly from (10.2)〈

u− ṽ , Ai(u)− v∗
〉
V
≤ 0.

Thus the conclusions of the continuity condition 5.5(2), see 4.1, is satisfied. There-
fore the continuity condition 5.5(2) is fulfilled.

It remains to show 5.5(3). From the coerciveness 6.2(3)

〈u− ū , A(t, u) 〉V ≥ c0‖u− ū‖
2
V − C0Bū(u)−G0(t) (10.3)

for all t > 0 and u ∈ M one gets, since ū does not depend on time, the same
estimate for the operator Ah,

〈u− ū , Ah(t, u) 〉V ≥ c0‖u− ū‖
2
V − C0Bū(u)−G0h(t), (10.4)

where

G0h(t) :=
1

h

∫ ih

(i−1)h

G0(s) ds for (i− 1)h < t ≤ ih

in other notation〈
u− ū , Ai(u)

〉
V
≥ c0‖u− ū‖2V − C0Bū(u)−G0h(ti). (10.5)

Since by 3.7 (
u− ū , b(u)− b(u(i−1))

)
H
≥ Bū(u)−Bū(u(i−1))

we obtain (
u− ū , λ(b(u)− b(u(i−1)))

)
H

+
〈
u− ū , Ai(u)

〉
V

≥ c0‖u− ū‖pV + λ(Bū(u)−Bū(u(i−1)))− C0Bū(u)−G0h(ti)

≥ c0‖u− ū‖pV − λBū(u(i−1))−G0h(ti)

if λ ≥ C0, therefore, since p > 1,(
u− ū , λ(b(u)− b(u(i−1)))

)
H

+
〈
u− ū , Ai(u)

〉
V

‖u− ū‖V
→∞

as ‖u‖V →∞. This shows coercivity 5.5(3) with ūi = ū. Since all assumptions are
fulfilled 5.5 is applicable.
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10.2 . We prove: There is u ∈ Lp([0, T ];V ) with u(t) ∈ M for almost all t, such
that for a subsequence h→ 0 the following convergence holds:

uh → u weakly in Lp([0, T ];V ),

A(uh) = A(•, uh)→ u∗ weakly∗ in Lp∗([0, T ];V ∗),

{Bū(uh) ; 0 < h < h0} bounded in L∞([0, T ]),

b(uh)→ b(u) strongly in L1([0, T ];H).

Here the approximative functions uh are defined only in [0, Th], where Th is the
largest multiple of h less or equal T . It is irrelevant, how uh is defined in ]Th, T ],
the main thing is that it stays bounded, for example we define it by ū. Then the
statements hold on the interval [0, T ].

We take a solution of 10.1, set w∗h(t) := Ah(t, uh(t)) in (7.2), and use the a-priori
estimate 7.1. We obtain

Bū(uh(t̄)) +

∫ t̄

0

〈uh(t)− ū , w∗h(t) 〉V dt ≤ Bū(u0).

The coerciveness (10.4) leads to∫ t̄

0

〈uh(t)− ū , w∗h(t) 〉V dt

≥ c0
∫ t̄

0

‖uh(t)− ū‖pV dt− C0

∫ t̄

0

Bū(uh(t)) dt−
∫ t̄

0

G0h(t) dt.

This implies

Bū(uh(t̄)) + c0

∫ t̄

0

‖uh(t)− ū‖pV dt

≤ Bū(u0) + C0

∫ t̄

0

Bū(uh(t)) dt+

∫ t̄

0

G0h(t) dt.

(10.6)

Since G0 ∈ L1([0, T ]) the last term on the right is bounded uniformly in h. Then a
Gronwall argumentation on the inequality (10.6) gives the boundedness of the sets

{Bū(uh) ; 0 < h < h0} in L∞([0, Th]).

Using this one gets from (10.6) the “parabolic” estimate

ess sup
t∈[0,Th]

Bū(uh(t)) +

∫ Th

0

‖uh‖pV ≤ C, (10.7)

where C depends only on u0, ū, G0, Bū, c0, T , and obvious quantities like p, n,
V , H. In particular, C is independent of h. Hence for a subsequence h → 0 there
exists the weak limit uh → u in Lp([0, T ];V ). Since uh(t) ∈ M for almost all t, it
follows that u(t) ∈M for almost all t.

Equation (10.7) says that (define for example uh(t) := ū for Th < t < T ) the
set {uh ; 0 < h < h0} satisfies the required boundedness assumption in 6.2(1).
It follows by the boundedness condition 6.2(1) that the set {A(uh) ; 0 < h <
h0} is bounded in Lp

∗
([0, T ];V ∗). Therefore there is a subsequence h → 0 so

(all subsequent subsequences have to be chosen as subsequence of the previous
subsequence), that the weak∗ limit A(uh)→ u∗ exists in Lp

∗
([0, T ];V ∗).
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What is missing is the strong convergence of b(uh) as h → 0. To derive this we
go into the second estimate in section 7, that is 7.2,

Eψ∗(b(uh(t+ s)), b(uh(t)), uh(t)) ≤ s · 1

j

j∑
i=1

〈uh(t)− uh(t+ ih) , w∗h(t+ ih) 〉V .

This gives ∫ T−s

0

Eψ∗(b(uh(t+ s)), b(uh(t)), uh(t)) dt

≤ s · 1

j

j∑
i=1

∫ T−s

0

〈uh(t)− uh(t+ ih) , w∗h(t+ ih) 〉V dt

≤ 2s · ‖uh‖Lp([0,T ];V )‖w
∗
h‖Lp∗ ([0,T ];V ∗).

By the estimates proved so far, that is the estimates for uh and w∗h = A(uh) the
right side is bounded by a constant times s. Thus we obtain∫ T−s

0

Eψ∗(b(uh(t+ s)), b(uh(t)), uh(t)) dt ≤ C · s.

This estimate is fulfilled for all s > 0, not only for multiple of h, see lemma 9.1. Then
the compactness theorem 9.3 implies that {b(uh) ; 0 < h < h0} is precompact in
L1([0, T ];H). Hence there is a subsequence h→ 0 so (all subsequent subsequences
have to be chosen as subsequence of the previous subsequence), that b(uh) strongly
in L1([0, T ];H) to a limit b∗. But then by 9.4 it is b(u) = b∗, so that b(uh)→ b(u)
strongly in L1([0, T ];H).

10.3. Proof of 6.2.

For the sequence uh we have the following time discrete inequality

Φhū(uh, v)(t̃) +

∫ t̃

0

〈uh(t)− v(t) , Ah(t, uh(t) 〉V dt ≤ 0

for all t̃ > 0 and all t 7→ v(t) ∈M with v ∈ L1([0, T ];H), where

Φhū(uh, v)(t̃) :=

∫ t̃

0

(
uh(t)− v(t) , ∂−ht b(uh(t))

)
H

dt

and uh(t) := u0 for t < 0. We now define for a given t̄ a t̃ = t̄h as a multiple of h
with

t̄h − h < t̄ ≤ t̄h.
We use this t̄h and obtain

Φhū(uh, v)(t̄h) +

∫ t̄h

0

〈uh(t)− v(t) , Ah(t, uh(t) 〉V dt ≤ 0.

Since uh is a step function, i.e. uh(t) = uh(ih) for (i− 1)h < t ≤ ih, see (5.10), we
compute for t̄h = īh∫ t̄h

0

〈uh(t) , Ah(t, uh(t) 〉V dt =

ī∑
i=1

h 〈uh(ih) , Ah(ih, uh(ih) 〉V

=

ī∑
i=1

∫ ih

(i−1)h

〈uh(ih) , A(t, uh(ih) 〉V dt =

∫ t̄h

0

〈uh(t) , A(t, uh(t) 〉V dt,
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that is

Φhū(uh, v)(t̄h) +

∫ t̄h

0

〈uh(t) , A(t, uh(t) 〉V dt

≤
∫ t̄h

0

〈 v(t) , Ah(t, uh(t) 〉V dt.

(10.8)

The parabolic part we compute (this looks similar to 8.2)

Φhū(uh, v)(t̄h) =

∫ t̄h

0

(
uh(t)− v(t) , ∂−ht b(uh(t))

)
H

dt

=

∫ t̄h

0

(
uh(t)− ū , ∂−ht b(uh(t))

)
H

dt

+

∫ t̄h

0

(
ū− v(t) , ∂−ht (b(uh(t))− b(u0))

)
H

dt.

With usage of lemma 3.7 this is

≥
∫ t̄h

0

∂−ht Bū(uh(t)) dt +
1

h

∫ t̄h

0

( ū− v(t) , b(uh(t))− b(u0) )H dt

− 1

h

∫ t̄h−h

−h
( ū− v(t+ h) , b(uh(t))− b(u0) )H dt

=

∫ t̄h

0

∂−ht Bū(uh(t)) dt +
1

h

∫ t̄h

−∞
( ū− v(t) , b(uh(t))− b(u0) )H dt

− 1

h

∫ t̄h−h

−∞
( ū− v(t+ h) , b(uh(t))− b(u0) )H dt

=
1

h

∫ t̄h

t̄h−h
Bū(uh(t)) dt−Bū(u0) +

1

h

∫ t̄h

t̄h−h
( ū− v(t) , b(uh(t))− b(u0) )H dt

−
∫ t̄h−h

0

(
∂+h
t (ū− v(t)) , b(uh(t))− b(u0)

)
H

dt

= Bū(uh(t̄h))−Bū(u0) + ( ū− vh(t̄h) , b(uh(t̄h))− b(u0) )H

−
∫ t̄h−h

0

(
∂+h
t (ū− v(t)) , b(uh(t))− b(u0)

)
H

dt.

Here we have used the choice of t̄h above, and

vh(t) :=
1

h

∫ ih

(i−1)h

v(s) ds for (i− 1)h < t ≤ ih.

Altogether we derived

Φhū(uh, v)(t̄h) ≥ Bū(uh(t̄h))−Bū(u0) + ( ū− vh(t̄h) , b(uh(t̄h))− b(u0) )H

−
∫ t̄h−h

0

(
∂+h
t (ū− v(t)) , b(uh(t))− b(u0)

)
H

dt

= Bū(uh(t̄))−Bū(u0) + ( ū− vh(t̄) , b(uh(t̄))− b(u0) )H

−
∫ t̄h−h

0

(
∂+h
t (ū− v(t)) , b(uh(t))− b(u0)

)
H

dt.

Now we know b(uh)→ b(u) strongly in L1([0, T ];H), and therefore for a subsequence
that b(uh)→ b(u) in H almost everywhere. Since Bū(uh(t̄)) = ψ∗ū(b(uh(t̄)))+ψū(0),
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see definition 3.6, and if we now assume that ∂tv ∈ L1([0, T ];H), we conclude that
for h→ 0 for almost all t̄

Bū(uh(t̄))−Bū(u0) + ( ū− vh(t̄) , b(uh(t̄))− b(u0) )H

−
∫ t̄h−h

0

(
∂+h
t (ū− v(t)) , b(uh(t))− b(u0)

)
H

dt

−→ Bū(u(t̄))−Bū(u0) + ( ū− v(t̄) , b(u(t̄))− b(u0) )H

−
∫ t̄

0

( ∂t(ū− v(t)) , b(u(t))− b(u0) )H dt

= Φū(u, v)(t̄),

see definition 8.1. Therefore we have proved that for almost all t̄

lim inf
h→0

Φhū(uh, v)(t̄h) ≥ Φū(u, v)(t̄). (10.9)

Since equation (10.8) reads

Φhū(uh, v)(t̄h) +

∫ t̄h

0

〈uh(t) , A(t, uh(t) 〉V dt

≤
∫ t̄h

0

〈 v(t) , Ah(t, uh(t) 〉V dt =

∫ t̄h

0

〈 vh(t) , A(t, uh(t) 〉V dt

−→
∫ t̄

0

〈 v(t) , u∗(t) 〉V dt

for h→ 0 (the sequence has to be chosen as the above subsequence), we obtain

lim inf
h→0

Φhū(uh, v)(t̄h) + lim sup
h→0

∫ t̄h

0

〈uh(t) , A(t, uh(t) 〉V dt

≤
∫ t̄

0

〈 v(t) , u∗(t) 〉V dt,

that is

Φū(u, v)(t̄) + lim sup
h→0

∫ t̄h

0

〈uh(t) , A(t, uh(t) 〉V dt ≤
∫ t̄

0

〈 v(t) , u∗(t) 〉V dt.

Since uh and A(uh) are bounded, the contribution∫ t̄h

t̄

〈uh(t) , A(t, uh(t) 〉V dt→ 0

as h→ 0, and therefore

Φū(u, v)(t̄) + lim sup
h→0

∫ t̄

0

〈uh(t) , A(t, uh(t) 〉V dt

≤
∫ t̄

0

〈 v(t) , u∗(t) 〉V dt.

(10.10)
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Now we come to the missing term for the sequence. We set v = uδ with uδ from
8.3 (it is ∂tv ∈ L1([0, T ];H)) and obtain

Φū(u, uδ)(t̄) + lim sup
h→0

∫ t̄

0

〈uh(t) , A(t, uh(t) 〉V dt

≤
∫ t̄

0

〈uδ(t) , u∗(t) 〉V dt −→
∫ t̄

0

〈u(t) , u∗(t) 〉V dt

as δ → 0. Since Φū(u, uδ)(t̄) in the limit δ → 0 is nonnegative as shown in 8.3, we
arrive at

lim sup
h→0

∫ t̄

0

〈uh(t) , A(t, uh(t) 〉V dt ≤
∫ t̄

0

〈u(t) , u∗(t) 〉V dt

This is the last property in the assumption of 6.2(2). (In reality one has to use the
time interval [0, T ] instead of [0, t̄], that is one has to use for example the functions

ũh(t) :=

{
uh(t) for t ≤ t̄
ū for t > t̄

}
, ũ∗(t) :=

{
u∗(t) for t ≤ t̄
A(t, ū) for t > t̄

}
,

and ũ defined with respect to u as ũh with respect to uh. Note, that then

lim sup
h→0

∫ T

0

〈 ũh(t) , A(t, ũh(t) 〉V dt ≤
∫ T

0

〈 ũ(t) , ũ∗(t) 〉V dt

holds.) Therefore we can use the conclusions of 6.2(2), that is for all v ∈ Lp([0, T ];V )
we infer ∫ t̄

0

〈u(t)− v(t) , A(t, u(t))− u∗(t) 〉V dt ≤ 0, and

lim sup
h→0

∫ t̄

0

〈uh(t) , A(t, uh(t)) 〉V dt =

∫ t̄

0

〈u(t) , u∗(t) 〉V dt.

(10.11)

Plugging the identity of (10.11) in the above equation (10.10), one gets

Φū(u, v)(t̄) +

∫ t̄

0

〈u(t)− v(t) , u∗(t) 〉V dt ≤ 0

and therefore, using the inequality in (10.11), one obtains

Φū(u, v)(t̄) +

∫ t̄

0

〈u(t)− v(t) , A(t, u(t) 〉V dt ≤ 0.

This is the assertion.

11. Examples. In the following we present some concrete examples. First there
are second order boundary value problems, where Ω ⊂ IRn is a bounded Lipschitz
domain and

H = L2(Ω; IRN ) and V = W 1,2(Ω; IRN ).

Here the usual isomorphism between L2(]t0, t1[×Ω; IRN ) and L2(]t0, t1[;H) is used.
Therefore we identify u(t, x) = u(t)(x). For simplicity we take N = 1, and we
let L2(Ω) = L2(Ω; IR) and W 1,2(Ω) = W 1,2(Ω; IR). Under these assumptions the
following standard example is true, where we do not choose the most general form.



2116 HANS WILHELM ALT

11.1 Second order problem. We let Ω ⊂ IRn as above and take a closed (may
be empty) set Γ ⊂ ∂Ω. On the time interval [0, T ] we consider the elliptic-parabolic
boundary value problem

∂tβ(x, u(t, x))− diva(x, u(t, x),∇u(t, x)) = f(t, x) for (t, x) ∈]0, T [×Ω,

u(t, x) = u1(x) for (t, x) ∈]0, T [×Γ,

a(u(t, x),∇u(t, x))•ν(x) = 0 for (t, x) ∈]0, T [×(∂Ω \ Γ),

β(x, u(0, x)) = β(x, u0(x)) for x ∈ Ω.

Here functions u1 ∈ W 1,2(Ω) and u0 ∈ L2(Ω) and a right side f ∈ L2([0, T ] × Ω)
are given. Moreover β : Ω× IR→ IR and a : Ω× IR× IRn → IRn are Carathéodory
functions, that is measurable in the first argument and continuous in the other
arguments. We assume the following monotonicity and growth conditions

(β(x, z1)− β(x, z2)) · (z1 − z2) ≥ 0,

(a(x, z, p1)− a(x, z, p2))•(p1 − p2) ≥ c · |p1 − p2|2,
|β(x, z) | ≤ C · (1 + | z |), | a(x, z, p) | ≤ C · (1 + | p |),

(1) Then, with a correct choice ofM, A, and b, this example is of the general type.
The condition 6.2(1) of theorem 6.3 is satisfied.

(2) If in addition a(x, z1, p) = a(x, z2, p) whenever β(x, z1) = β(x, z2), then the
continuity condition 6.2(2) is satisfied.

(3) If in addition Hn−1(Γ) > 0 or |β(x, z) − β(x, 0)| ≥ c1|z| for z ∈ IR, then the
coercivity 6.2(3) is satisfied.

Proof (1). Since we have the boundary condition u(t, •) = u1 in the formulation of
the problem, we set a time independent constraint

M := {u ∈ V ; u = u1 almost everywhere on Γ}

with V := W 1,2(Ω). The map b : H → H, H = L2(Ω), is given by

b(u)(x) := β(x, u(x)) for x ∈ Ω and u ∈ H.

If ϕ : Ω× IR→ IR is a convex map in the second variable with d
dzϕ(x, z) = β(x, z)

and ϕ(x, 0) = 0, then |ϕ(x, z) | ≤ C(1 + | z |2) by the growth condition on β, and
we are able to define ψ : H → IR by

ψ(u) :=

∫
Ω

ϕ(x, u(x)) dx for u ∈ H.

It follows that b = ∇ψ, that is

(∇ψ(u) , v )H = Dψ(u)(v) =
d

dε
ψ(u+ εv)

∣∣∣∣
ε=0

=

∫
Ω

d

dε
ϕ(x, u(x) + εv(x))

∣∣∣∣
ε=0

dx =

∫
Ω

d

dz
ϕ(x, u(x))v(x) dx = ( b(u) , v )H .

For the elliptic part we set A(t, •) : M → V ∗ by

〈 v , A(t, u) 〉V :=

∫
Ω

(
∇v(x)•a(x, u(x),∇u(x))− v(x)f(t, x)

)
dx for u, v ∈ V,

where a(•, u,∇u) ∈ L2(Ω) by the growth condition. The map

A : L2([0, T ];V )→ L2([0, T ];V ∗)
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is given by A(u)(t) := A(t, u), the set M given in (6.2) is a subset of L2([0, T ];V ).
To obtain the abstract equation (6.8) we have to identify u(t, x) = u(t)(x) with

u(t) ∈ V . The test functions ζ have compact support in [0, T [×(Ω \ Γ), which
is equivalent to ζ ∈ C∞([0, T ] × Ω) with ζ = 0 in a neighbourhood of {T} ×
Ω and [0, T ] × Γ. Therefore in (6.8) it is assumed that ζ(t, x) = ξ(t)(x), and now
ξ ∈ C∞0 ([0, T [;M1), where M1 := M − u1 is a subspace and ξ(t) = 0 for t close to
the final time T .

Proof (2). Let um, u ∈ L2([0, T ];W 1,2(Ω)) and v∗ ∈ L2([0, T ];W 1,2(Ω)∗) as in the
continuity condition 6.1. By the ellipticity condition on a

0 ≤
∫ T

0

∫
Ω

(∇um −∇v)•
(
a(x, um,∇um)− a(x, um,∇v)

)
dx dt

=

∫ T

0

〈um , A(t, um) 〉W 1,2(Ω) dt−
∫ T

0

〈 v , A(t, um) 〉W 1,2(Ω) dt

−
∫ T

0

∫
Ω

(∇um −∇v)•
(
a(x, um,∇v)− f(t, x)

)
dxdt.

Since by assumption we have a dependence a(x, z, p) = ã(x, β(x, z), p), where also
ã is a Carathéodory function, and since b(um)→ b(u) strongly in L1([0, T ];H), we
conclude for a subsequence m → ∞ that β(x, um(t, x)) → β(x, u(t, x)) for almost
all (t, x). Hence for a subsequence

a(x, um,∇v)→ a(x, u,∇v) strongly in L2([0, T ];L2(Ω)).

Therefore we get

0 ≤ lim sup
m→∞

∫ T

0

〈um , A(t, um) 〉W 1,2(Ω) dt−
∫ T

0

〈 v , v∗ 〉W 1,2(Ω) dt

−
∫ T

0

∫
Ω

(∇u−∇v)•
(
a(x, u,∇v)− f(t, x)

)
dxdt.

For v = u one obtains the second conclusion of continuity condition 6.1. Then

0 ≤
∫ T

0

〈u− v , v∗ 〉W 1,2(Ω) dt

−
∫ T

0

∫
Ω

(∇u−∇v)•
(
a(x, u,∇v)− f(t, x)

)
dx dt.

Now replace v by vε := u+ ε(v − u) and obtain for ε→ 0

0 ≤
∫ T

0

〈u− v , v∗ 〉W 1,2(Ω) dt

−
∫ T

0

∫
Ω

(∇u−∇v)•
(
a(x, u,∇u)− f(t, x)

)
dx dt

=

∫ T

0

〈u− v , v∗ −A(t, u) 〉W 1,2(Ω) dt,

which is the first conclusion of the continuity condition 6.1.
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Proof (3). To prove 6.2(3) we compute with ū = u1

〈u− ū , A(t, u)−A(t, ū) 〉W 1,2(Ω)

=

∫
Ω

(∇u−∇ū)•
(
a(•, u,∇u)− a(•, ū,∇ū)

)
dLn

=

∫
Ω

(∇u−∇ū)•
(
a(•, u,∇u)− a(•, u,∇ū)

)
dLn

+

∫
Ω

(∇u−∇ū)•
(
a(•, u,∇ū)− a(•, ū,∇ū)

)
dLn

≥ c‖∇(u− ū)‖2L2(Ω) − 2C‖∇(u− ū)‖L2(Ω) · ‖1 + |∇ū|‖L2(Ω),

hence

〈u− ū , A(t, u) 〉W 1,2(Ω)

≥ c‖∇(u− ū)‖2L2(Ω) − ‖∇(u− ū)‖W 1,2(Ω) · ‖A(t, ū)‖W 1,2(Ω)∗

−2C‖∇(u− ū)‖L2(Ω) · ‖1 + |∇ū|‖L2(Ω).

This gives the desired estimate, since in case Hn−1(Γ) > 0 the Poincaré inequality

can be used, and otherwise ‖u− ū‖2L2(Ω) ≤ C1(1 +Bū(u)) by assumption on β.

The fact, that one proves that A maps into L2([0, T ];V ∗), usually gives the
boundedness condition 6.2(1) as a byproduct. We mention, that also the case, that
a(x, u(t, x),∇u(t, x)) has a controlled unbounded term in u(t, x), can be treated.
Similar arguments apply to a right side f(t, x, u(t, x)).

Also the case of systems of elliptic equations is covered, that is the case N > 1.
Then different components of this system may satisfy different boundary conditions.

In general, there is not, as usual in parabolic equations, a uniqueness theorem as
consequence of the existence theory. Uniqueness theorems are available only under
additional assumptions (see e.g. [5]). The reason for nonuniqueness is, that the
theory works for elliptic-parabolic problems, and it is well known that for elliptic
problems in general the solution is not unique.

11.2 Non-uniqueness. Let β : IR→ IR be given and consider the problem

∂tβ(u)− div(a∇u) = f(u) in ]0,∞[×Ω,

∂νu = 0 on ]0,∞[×∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

with a strictly positive function a ∈ L∞(]0,∞[×Ω) and a continuous sublinear
function f : IR → IR. We assume that β is continuous, sublinear, and weakly
monotone non-decreasing. Under these assumptions there is a weak solution for
each initial datum u0 ∈ L∞(Ω). Let us take the example

β(u) =


β− + c−(u− u−) for u ≤ u−,
β+ + c+(u− u+) for u ≥ u+,

monotone and continuous for u− ≤ u ≤ u+,

where c− ≥ 0, c+ ≥ 0, u− < u+, and β− ≤ β+. Then the following is true:

(1) If β− = β+ and f = 0, then for u− ≤ u0 ≤ u+ each function u = const. is a
solution, if this constant lies in ]u−, u+[.
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(2) If u− ≤ u0 ≤ u+, then each function can be obtained as limit of unique solutions
of problems with strictly monotone β.

Proof (2). Let ū0 = const. with u− ≤ ū0 ≤ u+. For δ > 0 and ε > 0 let us consider
the problem

∂tβδ(u)− div(a∇u) = −ε(u− ū0) in ]0,∞[×Ω,

∂νu = 0 on ]0,∞[×∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

where

βδ(u) := β(u) + δu .

Let u = uδε be the unique weak solution of this approximate problem. By the
maximum principle u− ≤ u ≤ u+, so that the differential equation is

δ∂tu− div(a∇u) + ε(u− ū0) = 0,

and from there the energy estimate

δ

2

∫
Ω

(u(t, x)− ū0)2 dx+

∫ t

0

∫
Ω

(
a(t, x)|∇(u(t, x)− ū0)|2 + ε(u(t, x)− ū0)

)
dxdt

≤ δ

2

∫
Ω

(u0(x)− ū0)2 dx

holds. It follows immediately, if one chooses δ = δε small enough, that uδεε → ū0

when ε→ 0.

The problem where u− = u+ and β− < β+ is not contained in this theorem,
although the theory is capable to treat this case as a limit u+− u− ↘ 0, but we do
not discuss this here.

The standard case of parabolic equations is, that the solutions are continuous in
time. This is not the case here, and it has again to do with the elliptic-parabolic
character of the problem, see [5, Introduction].

11.3 Non-continuity. Consider the problem

∂tβ(u)−∆u = 0 in ]0,∞[×Ω,

u(t, x) = u1(t) for t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

where Ω = BR (0) is a ball, u1 < 0 continuous, and

β(u) = max(u, 0).

Then the following holds:

(1) If the initial data are positive somewhere, there is a solution u, which has a
jump in time.

(2) The solution in (1) is the limit of the unique solutions with β = βε,

βε(u) =

{
u for u ≥ 0,

εu for u ≤ 0,

as ε→ 0.
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Proof (1). In the case n = 1 for suitable initial data and boundary data, a weak
solution is

u(t, x) =

 s(t) · η
(

x

s(t)
ξ

)
for |x| ≤ s(t),

ξη′(ξ) · (|x| − s(t)) for |x| ≥ s(t),
which is a C1-function until the jump happening at time t = tcrit, where

s(t) = 2ξ
√
tcrit − t,

and a function constant in x

u(t, x) = u1(t)

after the jump. Here the boundary data, we assume R > s(0), are

u1(t) =

{
ξη′(ξ) · (R− s(t)) before the jump t ≤ tcrit,
less than zero after the jump t ≥ tcrit.

Further

η(y) = 1−
∞∑
i=1

y2i

i!(2i− 1)
,

or equivalently,

η′′(y)− 2yη′(y) + 2η(y) = 0,

η(0) = 1, η′(0) = 0, ξ ≈ 0.92414 first positive zero of η .

The boundary data u1 can be continuous for all t. For n > 1 the procedure is
similar.

One sees in both examples 11.2 and 11.3 that the method in this paper is closed
among all problems with a weakly monotone β. We mention that uniqueness the-
orems as well as regularity theorems one can find in different literature. One can
also think about differential equations of fourth order. Depending on the bound-
ary condtion, say, if they are given as Dirichlet conditions of the values and first
derivatives, one uses H = L2(Ω) and V = W 2,2(Ω) as spaces. Also other spaces
have applications.

12. Generalizations. A generalization is the situation that H is a Banach space,
e.g. as in [9]. We do not consider this situation here, but it is one of the first things
to do. If H = Lq(Ω) with q > 1, more general monotone functions β,

|β(x, z) | ≤ C(1 + | z |s) with s > 1,

would be allowed. Another class of problems have even stronger growth like

β(u) = eu,

or more general an arbitrary growth. This class also belongs to the closure of
problems of this method, but is not considered here.

An important example comes from diffusion in a chemical system. Although
this seems to be an application of this theory, it is not clear, how the standard
assumptions fit our theorem, see e.g. [24]. The source term, which is there already
in the ODE version, is monotone, but does not give a contribution to the standard
diffusion term. That is, if one leaves the ODE version unchanged, one has to
manipulate the elliptic part of the problem to make the theorem work. This is done
in [24].
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As mentioned in the paper, a generalization to a time dependent constraint is
possible, but not contained in this paper. This is important, as examples in [15], [16]
and [13] show. It is also possible to show the existence locally in time, as presented
in [3]. For this a weaker coercivity condition is enough.

Of big interest it would be, to generalize the set V to a locally convex topological
vector space. The 3D incompressible Navier-Stokes equation does not satisfy the
assumption in the present version. Leray’s weak solution of Navier-Stokes equation
uses D(Ω) = C∞0 (Ω) and its dual space D′(Ω) = (D(Ω))∗ for the formulation. The
generalization would go into this direction. The incompressible 2D Navier-Stokes
equation is covered by the existence theorem of this paper because

‖u‖2L4([t0,t1]×Ω) ≤ C · ‖u‖L2([t0,t1];W 1,2(Ω))‖u‖L∞([t0,t1];L2(Ω)) for n = 2 .

13. Appendix. In the following we deal with statements about Gelfand triples

(Ṽ ,H, Ṽ ∗), that is, about a Hilbert space H and a Banach space Ṽ satisfying

Ṽ ↪→ H ↪→ Ṽ ∗, (13.1)

by which one means, that the following line of mappings

Ṽ → H ∼= H∗ → Ṽ ∗

I JH I∗
(13.2)

exist, where I : Ṽ → H is a continuous linear map. Here JH : H → H∗ is the

isomorphism of the Riesz representation theorem and I∗ : H∗ → Ṽ ∗ the adjoint

map of I : Ṽ → H. We can also write

Ṽ → H → Ṽ ∗.
I J := I∗◦JH

(13.3)

In literature the notion of a Gelfand triple includes the injectivity of I and J , or
equivalently, the injectivity of I and I∗. We mention the following

13.1 Proposition. Let H be a Hilbert space and Ṽ a Banach space, such that

(Ṽ ,H, Ṽ ∗) satisfies (13.2). Then

(1) ‖I(v)‖H ≤ C‖v‖Ṽ for all v ∈ Ṽ .

(2) J := I∗◦JH : H → Ṽ ∗ has the representation

〈 v , J(u) 〉Ṽ = ( I(v) , u )H for u ∈ H, v ∈ Ṽ .

(3) The map J̃ := I∗◦JH ◦I : Ṽ → Ṽ ∗ satisfies〈
v1 , J̃(v2)

〉
Ṽ

= ( I(v1) , I(v2) )H for v1, v2 ∈ Ṽ .

(4) J injective ⇐⇒ I(Ṽ ) dense in H.

The following has to be applied, if a general space Ṽ is given.

13.2 Lemma. The general case in 13.1, with the assumption that I is injective,
can be reduced to the special case

V ⊂ H with a continuous mapping Id : V → H

via
V := I(Ṽ ) ⊂ H, ‖v‖V :=

∥∥I−1v
∥∥
Ṽ
.
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Remark: If Ṽ is a Hilbert space, also V becomes a Hilbert space with ( v1 , v2 )V :=(
I−1v1 , I

−1v2

)
Ṽ

.

The following theorem is functional analysis (a proof is contained in [7]). In this
paper it is unspoken used when bounded sets in Lp

∗
([t0, t1];V ∗) occurred and when

it was used that such sets are weakly sequentially compact.

13.3 Lemma. If V is a separable reflexive Banach space and 1 < p <∞. Then

Lp
∗
([t0, t1];V ∗) ∼= (Lp([t0, t1];V ))

∗
.

The Isomorphism Ip going from the left space to the right one is given by

〈 v , Ip(f∗) 〉Lp([t0,t1];V ) :=

∫ t1

t0

〈 v(t) , f∗(t) 〉V dt

for f∗ ∈ Lp∗([t0, t1];V ∗) and for v ∈ Lp([t0, t1];V ).
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