LECTURE ON

MATHEMATICAL CONTINUUM MECHANICS EXERCISES

H.W. ALT & G. WITTERSTEIN

Version: 20190222

Last major change: 20.03.2018

Copyright © 2014-2019 Dr. H.W. Alt & Dr. G. Witterstein

Die Verteilung dieses Dokuments in elektronischer oder gedruckter Form ist gestattet, solange die Autoren- und Copyright-Angabe, sowie dieser Text unverändert bleiben und exakt in allen Versionen dieses Dokuments wiedergegeben werden, die Verteilung ferner kostenlos erfolgt – abgesehen von einer Gebühr für den Datenträger, den Kopiervorgang usw. – und dafür Sorge getragen wird, dass jeder, an den dieses Dokument verteilt wird, die hier spezifizierten Rechte seinerseits wahrnehmen kann.

This is the english version of the script, so far it is only partly translated. This version is preliminary, it is subject to corrections.

author: H.W. Alt & G. Witterstein

title: Exercises

Contents

1	Asteroid in the atmosphere
2	Kepler's laws
3	Day and night
4	Cyclone
5	Apropos Newton
6	Spheroid
7	Gravitational field of a hollow sphere
8	Gravitation of a rotationally symmetric star
9	N-body problem
10	$\operatorname{Sgr} \operatorname{A}^*$
11	Detonation
12	Relativistic gravitational law
13	Lemma of Poincaré

Introduction

Die mathematische Modellierung physikalischer Phänomene ist im Skript zur Vorlesung dargestellt. Sie erfordert für ihr Verständnis die Lösung von Aufgaben, wie sie in dem Skript am Ende jeden Kapitels aufgeführt sind (Skript: "Mathematische Kontinuuumsmechanik" TUM):

- [Script: Sec I.7 Mass and momentum]
- [Script: Sec II.7 Objectivity]
- [Script: Sec III.7 Entropy and Energy]

Darüber hinaus gibt es auch Aufgaben, für die eine besondere Erklärung notwendig erscheint. Es sind hier Aufgaben dargestellt, für die das zutrifft.

1 Asteroid in the atmosphere

1 Asteroid in the atmosphere

Wir behandeln hier ein sich bewegendes Objekt $t \mapsto \xi(t)$, bei dem die Masse variiert, d.h. der Quellterm in der Massenerhaltung des Objektes ist nichtnull.

1.1 Rocket. Let μ_{ξ} as in [Script: Equ (I2.5) Trajectory as Distribution] and let two differentiable maps $t \mapsto m(t) \in \mathbb{R}$ and $t \mapsto v(t) \in \mathbb{R}^n$ and a continuous map $t \mapsto \mathbf{r}(t) \in \mathbb{R}$ be given satisfying the distributional mass conservation law

$$\partial_t(m\boldsymbol{\mu}_{\varepsilon}) + \operatorname{div}(mv\boldsymbol{\mu}_{\varepsilon}) = \mathbf{r}\boldsymbol{\mu}_{\varepsilon}.$$

Show that this implies:

$$\dot{m} = \mathbf{r}, \quad v = \xi.$$

Fig. 1: "Heller als die Sonne: Eine Armaturenbrettkamera hat den Asteroiden aufgenommen" aus dem Artikel: "So hell wie 30 Sonnen" von Manfred Lindinger 06.11.2013 FAZ-online

Solution as in [Script: Stmt I.2.9 Massenpunkt]. The proof works in a similar way as in the script. Choose a test function $\zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^n)$. Then

$$0 = \left\langle \zeta , -\partial_t (m \boldsymbol{\mu}_{\boldsymbol{\xi}}) - \operatorname{div} (m v \boldsymbol{\mu}_{\boldsymbol{\xi}}) + \mathbf{r} \boldsymbol{\mu}_{\boldsymbol{\xi}} \right\rangle_{\mathscr{D}(\mathbb{R} \times \mathbb{R}^n)}$$
$$= \int_{\mathbb{R}} (m \partial_t \zeta + m v \bullet \nabla \zeta + \mathbf{r} \zeta) (t, \boldsymbol{\xi}(t)) \, \mathrm{d}t \,,$$

and with the velocity of Γ , that is $v_{\Gamma}(t, x) = \dot{\xi}(t)$ for $x = \xi(t)$, we get that this is

$$= -\int_{\mathbb{R}} \dot{m}(t)\zeta(t,\xi(t)) \,\mathrm{d}t + \int_{\mathbb{R}} (m(v-v_{\Gamma})\bullet\nabla\zeta)(t,\xi(t)) \,\mathrm{d}t + \int_{\mathbb{R}} \mathbf{r}(t)\zeta(t,\xi(t)) \,\mathrm{d}t \,.$$

This identity is true for all $\zeta \in C_0^{\infty}(\mathbb{R} \times \mathbb{R}^n)$, by approximation it also holds for all $\zeta \in C_0^1(\mathbb{R} \times \mathbb{R}^n)$ (see [Script: Stmt I.2.6(5)]). Now use $\zeta(t, x) = \eta_0(t)\chi(t, x) + \eta_1(t, x)$, where $\eta_0 \in C_0^1(\mathbb{R})$, $\eta_1 \in C_0^1(\mathbb{R} \times \mathbb{R}^n)$, $\chi \in C^1(\mathbb{R} \times \mathbb{R}^n)$ with $\eta_1 = 0$,

author: H.W. Alt & G. Witterstein

title: Exercises

1 Asteroid in the atmosphere

 $\chi = 1, \nabla \chi = 0$ on Γ , and $\chi = 0$ away from Γ . Then, the above integral becomes

$$= \int_{\mathbb{R}} (-\dot{m}(t) + \mathbf{r}(t))\eta_0(t) \,\mathrm{d}t + \int_{\mathbb{R}} (m(v - v_\Gamma)(t, \xi(t))) \bullet \nabla \eta_1(t, \xi(t)) \,\mathrm{d}t$$

If we choose $\eta_1 = 0$ it follows for all η_0 that the first integral is zero, hence

$$-\dot{m}(t) + \mathbf{r}(t) = 0.$$

Thus the first assertion is shown. Then the above second integral has to be 0. If we use $\eta_1(t,x) = (x - \xi(t)) \bullet w(t)$ with $w \in C_0^1(\mathbb{R})$, then $v(t,\xi(t)) = v_{\Gamma}(t,\xi(t)) = \dot{\xi}(t)$, that is the second assertion.

Wir betrachten jetzt ein Objekt, das Masse verliert, d.h. der Quellterm in der Massenerhaltung ist negativ. Als Beispiel dient der Asteroid, der im November 2013 im Ural auftrat. Etwas zufällige Aufnahmen sieht man in Fig. 1 und Fig. 2. Dazu die Kommentare:

- "Der Asteroid ist mit 18 Kilometern pro Sekunde, also etwa 65000 Kilometern pro Stunde, in die Atmosphäre eingetreten. Das ist ein Vielfaches der Schallgeschwindigkeit. Die Luftmoleküle, auf die der Asteroid trifft, können nicht ausweichen und werden stark komprimiert. Als Folge erhitzt sich die aufgestaute Luft, sie wird ionisiert. Das, was zur Seite ausweichen kann, erzeugt die Leuchtspur des Meteors. Das, was nicht ausweichen kann, überträgt enorme Mengen an thermischer und mechanischer Energie auf den Asteroiden. Irgendwann wird die Aufheizung und mechanische Spannung so groß, dass das Material seinen Zusammenhalt verliert der Körper zerplatzt in dem Bruchteil einer Sekunde. Dieses Zerplatzen löst eine Stoßwelle aus." Aus [Suw 4]2013]
- "Monate nach der Explosion im Ural können Forscher Datails über den Asteroiden vorlegen: Das 4,45 Milliarden Jahre alte kosmische Gesteinsbrocken habe bei seiner Explosion eine Sprengkraft von 600 Kilotonnen TNT gehabt."

Das Beispiel eines Asteroiden oder einer Sternschnuppe (*en:* falling star), der sich in der Luft auflöst, wird im folgenden gegeben. Dabei wird, in Abweichung zum obigen Kommentar, nur die Massenerhaltung betrachtet. Außerdem sei der Massenverlust des Objektes eine L^{∞} -Funktion in der Zeit.

1.2 Mass conservation of a rocket and surrounding gas. We give a model of the flight of a rocket where the loss of mass of the rocket will be incorporated in the mass of the surrounding gas. Let $t \mapsto \xi(t)$ the position vector of the rocket and let the mass density of the gas given by $(t, x) \mapsto \varrho(t, x)$. Then we postulate the following laws

$$\partial_t (m^R \boldsymbol{\mu}_{\xi}) + \operatorname{div} (m^R v^R \boldsymbol{\mu}_{\xi}) = -\mathbf{r} \boldsymbol{\mu}_{\xi} , \partial_t (\varrho \mathbf{L}^{n+1}) + \operatorname{div} ((\varrho v - \kappa \nabla \varrho) \mathbf{L}^{n+1}) = +\mathbf{r} \boldsymbol{\mu}_{\xi}$$
(1.1)

in the distributional sense. Here $t \mapsto m^R(t)$ is the mass of the rocket and $t \mapsto v^R(t)$ its velocity. The term $-\mathbf{r} < 0$ stands for the loss of mass. Show:

(1) The total mass $m^R \mu_{\xi} + \rho \mathcal{L}^{n+1}$ is conserved.

author: H.W. Alt & G. Witterstein

title: Exercises

Unvermittelt zerstörte ein gleißend heller Feuerball die Idylle. Wegen der zuvor genutzten manuellen Belichtungseinstellung ist die Aufnahme, die um 09:20:33 Uhr entstand, stark überbelichtet.

Fig. 2: Der Tscheljabinsk-Meteor 2013, aus Zeitschrift SuW 4|2013

(2) The mass equation of the rocket is equivalent to $\dot{m}^R = -\mathbf{r}$ and $v^R = \dot{\xi}$.

(3) For v = 0 and $\kappa = \text{const} > 0$ give the solution of the mass equation for ρ in the case that $\mathbf{r} \in C_0^{\infty}(\mathbb{R})$.

Solution (1). The total mass M is a distribution and is given by

$$M := m^R \boldsymbol{\mu}_{\boldsymbol{\xi}} + \varrho \mathbf{L}^{n+1} \,,$$

and the total mass is conserved, since

$$\partial_t M + \operatorname{div}\left(m^R v^R \,\boldsymbol{\mu}_{\xi} + (\varrho v - \kappa \nabla \varrho) \mathbf{L}^{n+1}\right) = 0 \,.$$

This can also be written as (if $x \mapsto v(t, x)$ is assumed to be continuous at $\xi(t)$)

$$\partial_t M + \operatorname{div} \left(M v + \mathbf{J} \right) = 0 \,,$$
$$\mathbf{J} := m^R (v^R - v) \, \boldsymbol{\mu}_{\xi} - \kappa \nabla \varrho \mathbf{L}^{n+1} \,,$$

whith a mass diffusion vector \mathbf{J} .

.

Solution (2). See 1.1. We mention that it is clear that, if \mathbf{r} has compact support, then

$$\int_{\mathbb{R}} \mathbf{r}(t) \, \mathrm{d}t = m^R(-\infty) - m^R(+\infty) \le m^R(-\infty) \,,$$

since $m^R \ge 0$.

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

1 Asteroid in the atmosphere

Solution (3). Under the assumptions (1.1) becomes

$$\partial_t[\varrho] - \kappa \Delta[\varrho] = +\mathbf{r} \boldsymbol{\mu}_{\boldsymbol{\xi}} \; .$$

Since the fundamental solution of the heat equation (see [Script: Stmt I.7.13]) is

$$F(t,x) := \begin{cases} \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right) & \text{for } t > 0, \\ 0 & \text{otherwise,} \end{cases}$$

it follows that the fundamental solution of $\partial_t - \kappa \Delta$ is

$$F_{\kappa}(t,x) := \begin{cases} \frac{1}{(4\pi\kappa t)^{n/2}} \exp\left(-\frac{|x|^2}{4\kappa t}\right) & \text{for } t > 0, \\ 0 & \text{otherwise,} \end{cases}$$

that is, $F_{\kappa}(t,x) = F(\kappa t,x)$. Then $(\partial_t - \kappa \Delta)F_{\kappa} = \delta_{(0,0)}$. Thus the solution reads

$$\varrho(t,x) = \varrho_0 + \int_{-\infty}^t F_{\kappa}(t-t',x-\xi(t'))\mathbf{r}(t') \,\mathrm{d}t'$$

$$= \varrho_0 + \int_{-\infty}^t \frac{\mathbf{r}(t')}{(4\pi\kappa t')^{n/2}} \exp\left(-\frac{|x-\xi(t')|^2}{4\kappa t}\right) \mathrm{d}t'$$
(1.2)

with a constant $\rho_0 \ge 0$.

Wir betrachten die Lösung ρ von (1.2) und nehmen nun an, dass als Funktion in der Zeit $\mathbf{r} \to \mathbf{r}_0 \boldsymbol{\delta}_{t_0}$ konvergiert mit $\mathbf{r}_0 > 0$. Es folgt dann

$$\begin{split} \varrho(t,x) &\to \varrho_0 + \mathbf{r}_0 F_{\kappa}(t-t_0, x-\xi(t_0)) \,, \\ m^R(t) &\to \begin{cases} m^R(-\infty) \text{ für } t < t_0 \,, \\ m^R(-\infty) - \mathbf{r}_0 \text{ für } t > t_0 \,, \end{cases} \end{split}$$

d.h. wenn der Satellit einen Teil seiner Masse zu einem bestimmtem Zeitpunkt an die leere Umgebung abgibt, so ist die Gasdichte gleich der mit \mathbf{r}_0 multiplizierten Fundamentallösung ab diesem Zeitpunkt. Die distributionellen Differentialgleichungen, mit beliebigem v, lauten dann

$$\partial_t (m^R \boldsymbol{\mu}_{\boldsymbol{\xi}}) + \operatorname{div} (m^R v^R \boldsymbol{\mu}_{\boldsymbol{\xi}}) = -\mathbf{r}_0 \boldsymbol{\delta}_{(t_0, \boldsymbol{\xi}(t_0))}, \partial_t (\varrho \mathbf{L}^{n+1}) + \operatorname{div} ((\varrho v - \kappa \nabla \varrho) \mathbf{L}^{n+1}) = +\mathbf{r}_0 \boldsymbol{\delta}_{(t_0, \boldsymbol{\xi}(t_0))}$$
(1.3)

author: H.W. Alt & G. Witterstein

title: Exercises

2 Kepler's laws

2.1 Nachlesen in Wikipedia. Vergleiche die Herleitung der Kepler-Bewegung in [Script: Stmt I.3.3 Kepler's law] und [Wikipedia: Kepler Gesetze].

Hinweis: Unsere Herleitung in [Script: Stmt I.3.3] beruht auf der allgemeinen Massen- und Impulserhaltung, welches äquivalent zu der ODE (der Newton'schen Bewegungsgleichung) ist.

Fig. 3: "Illustration of Kepler's three laws with two planetary orbits" from Wikipedia.

2.2 Kepler's laws. [Script: Stmt I.3.3 "Kepler'sche Bewegung"] Show that the differential equations in the script imply the three Kepler laws:

1. The Law of Orbits. All planets move in elliptical orbits, with the sun at one focus.

2. The Law of Areas. A line that connects a planet to the sun sweeps out equal areas in equal times.

3. The Law of Periods. The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

(From hyperphysics.phy-astr.gsu.edu/hbase/kepler.html)

Die Kepler'schen Gesetze werden hergeleitet auf der Grundlage des Newton'schen Gravitationsgesetzes. Es wird dabei nur der Planet betrachtet und die Anziehungskraft der Sonne berücksichtigt. Die Anziehungskraft anderer Planeten, oder Monde, werden dabei vernachlässigt, d.h. nicht betrachtet. Die Kepler-Bewegung ist also als Näherung zu verstehen.

1. The Law of Orbits. We know from [Script: Stmt I.3.3]

$$r(\varphi) = \frac{p}{1 - e\cos\varphi} \,. \tag{2.1}$$

We introduce polar coordinates $x = r \cos \varphi$ and $y = r \sin \varphi$. Then from (2.1) it follows

$$r = \frac{rp}{r + ex} \implies \sqrt{x^2 + y^2} = p - ex$$
.

author: H.W. Alt & G. Witterstein

title: Exercises

2 Kepler's laws

We square the equation and obtain

$$(1 - e^2)x^2 + 2pex + y^2 = p^2$$

By a simple calculation it follows

$$\left(x+e\frac{p}{1-e^2}\right)^2 + \frac{y^2}{1-e^2} = \frac{p^2}{1-e^2} + \frac{p^2e^2}{(1-e^2)^2}.$$

We define

$$a := \frac{p}{1 - e^2}, \qquad b := \frac{p}{\sqrt{1 - e^2}}.$$
 (2.2)

Then it becomes

$$\frac{(x+ea)^2}{a^2} + \frac{y^2}{b^2} = 1.$$
(2.3)

Thus, the set (x, y) fulfilling (2.3) describes an ellipse with one focal point in (0, 0) and another focal point in (-2ea, 0). The value a in (2.2) is the major semi-axis and b the minor semi-axis.

2. The Law of Areas. The area between two time points t_0 and t reads

$$F(t_0,t) := \frac{1}{2} \int_{t_0}^t |\xi(\tau) \times \dot{\xi}(\tau)| d\tau ,$$

where $\xi(\tau) = r(\varphi(\tau))e^{i\varphi(\tau)}$, see I.3.4. By simple computation it is $\dot{\xi} = r'\dot{\varphi}e^{i\varphi} + r\dot{\varphi}i e^{i\varphi}$, $e^{i\varphi} \times e^{i\varphi} = \vec{0}$ and $|e^{i\varphi} \times ie^{i\varphi}| = 1$ and thus it follows

$$F(t_0,t) := \frac{1}{2} \int_{t_0}^t r(\tau)^2 \dot{\varphi}(\tau) d\tau = \frac{1}{2} \sqrt{pGm_0} (t-t_0) , \qquad (2.4)$$

since $r^2 \dot{\varphi} = \text{const}$, see I.3.4.

3. The Law of Periods. We know from I.3.4

$$\dot{\varphi}r^2 = \sqrt{pGm_0}$$

where m_0 the mass of the sun. Since (2.4), for the entire area in the whole period T applies

$$\frac{T}{2}\sqrt{pGm_0} = \pi ab \,.$$

From (2.2) we know $b = \sqrt{p}\sqrt{a}$ and thus

$$\frac{T}{2}\sqrt{Gm_0} = \pi a^{3/2}$$

or in the more convenient way

$$\frac{T^2}{a^3} = \frac{4\pi^2}{Gm_0} \,.$$

If we consider the case of two planets surrounding the sun we obtain

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{a_1}{a_2}\right)^3,$$

where T_1 , T_2 the periods of the two planets, respectively, and a_1 , a_2 their major semi-axes.

author: H.W. Alt & G. Witterstein

title: Exercises

3.1 Coordinates on the earth. We model the earth as a ball

 $B := \{ x^* \in \mathbb{R}^3 ; |x^*| < R_{\text{Earth}} \}.$

(1) Seien $x^* = (x_1^*, x_2^*, x_3^*)$ die Koordinaten der Erde im ekliptischen System, d.h. wir betrachten einen Beobachter, der sich im Zentrum der Erde befindet und die Sonne in der (x_1^*, x_2^*) -Ebene sieht. Gebe eine Beobachtertransformation zu einem auf der Erde befindlichen Menschen an.

(2) Zeige, wie das Tagesintervall sich während des Jahres verändert.

(3) Gebe eine Definition der Tageslänge an.

Fig. 4: "Erdphasen für einen heliozentrisch ortsfesten Beobachter im Weltall (nicht größengetreue Darstellung)" von Wikipedia.

Solution (1). Let $x^* = (x_1^*, x_2^*, x_3^*)$ the coordinates of $\overline{B} \subset \mathbb{R}^3$. We choose a unit vector $e \in \text{span} \{ \mathbf{e}_2, \mathbf{e}_3 \}$

$$e := \cos \alpha \, \mathbf{e}_3 + \sin \alpha \, \mathbf{e}_2, \quad \alpha = 23^{\circ}.4402 = 23^{\circ}26'25''$$

We let the position of the observer

$$\begin{split} \xi(\varphi) &:= r_1 e + r_2 (\cos \varphi \, e_\perp + \sin \varphi \, \mathbf{e}_1) \,, \\ e_\perp &= \sin \alpha \, \mathbf{e}_3 - \cos \alpha \, \mathbf{e}_2 \,, \\ r_1 &> 0, \quad r_2 > 0, \quad \sqrt{r_1^2 + r_2^2} = R_{\text{Earth}} \,. \end{split}$$

Hence

 $\begin{aligned} \xi(\varphi) &= r_1 e + r_2 \cos \varphi \, e_\perp + r_2 \sin \varphi \, \mathbf{e}_1 \\ &= r_1 (\cos \alpha \, \mathbf{e}_3 + \sin \alpha \, \mathbf{e}_2) + r_2 \cos \varphi \, (\sin \alpha \, \mathbf{e}_3 - \cos \alpha \, \mathbf{e}_2) + r_2 \sin \varphi \, \mathbf{e}_1 \\ &= r_2 \sin \varphi \, \mathbf{e}_1 + (r_1 \cos \alpha + r_2 \cos \varphi \sin \alpha) \mathbf{e}_3 + (r_1 \sin \alpha - r_2 \cos \varphi \cos \alpha) \mathbf{e}_2 \,. \end{aligned}$

author: H.W. Alt & G. Witterstein

title: Exercises

Defining the orthonormal system

$$\begin{split} e_{h} &= \frac{1}{R_{\text{Earth}}} \xi(\varphi) \,, \quad e_{wo} = \frac{1}{R_{\text{Earth}}} \xi_{'\varphi}(\varphi) \,, \\ e_{sn} &= \frac{1}{|e - e \bullet \xi(\varphi) \xi(\varphi)|} e - e \bullet \xi(\varphi) \xi(\varphi) \,, \end{split}$$

we assign to (x_1^*, x_2^*, x_3^*) a vector (x_1, x_2, x_3) by

$$\xi + x_1 e_{wo} + x_2 e_{sn} + x_3 e_h = x^* \,.$$

This transformation is a basis for an observer transformation.

Solution (2). Let the direction of the sun be

$$e_{\mathrm{Sun}} = \sin\theta \,\mathbf{e}_1 - \cos\theta \,\mathbf{e}_2$$

The condition that the observer on earth can see the sun is

$$e_{\operatorname{Sun}} \bullet e_h > 0.$$

Now

$$e_{\mathrm{Sun}} \bullet e_h = \cos \theta (r_2 \cos \varphi \cos \alpha - r_1 \sin \alpha) + r_2 \sin \theta \sin \varphi$$

= $r_2 (\cos \theta \cos \varphi + \sin \theta \sin \varphi) + \cos \theta (r_2 \cos \varphi (\cos \alpha - 1) - r_1 \sin \alpha)$
= $r_2 \cos (\varphi - \theta) + \cos \theta (r_2 \cos \varphi (\cos \alpha - 1) - r_1 \sin \alpha)$,

hence we have day-time if

$$\cos\left(\varphi-\theta\right)>\cos\theta(\cos\varphi(\cos\alpha-1)-\frac{r_1}{r_2}{\sin\alpha})\,.$$

If β is the (*de:* Breitengrad), that is (if $\beta > 0$)

$$\sin\beta = \frac{r_1}{R_{\text{Earth}}},$$

we conclude

$$\frac{r_1}{r_2} = \frac{r_1}{\sqrt{R_{\text{Earth}}^2 - r_1^2}} = \frac{\sin\beta}{\sqrt{1 - \sin^2\beta}} = \tan\beta,$$

hence we can write

$$\cos\left(\varphi - \theta\right) > \cos\theta\left(\left(\cos\alpha - 1\right)\cos\varphi - \tan\beta\sin\alpha\right). \tag{3.1}$$

Solution (3). Wenn ω die Winkelgeschwindigkeit der Erde ist, so ist (bis auf Festlegung des Nullpunktes)

$$\varphi = \omega t + \varphi_0 \,.$$

Da die Erde in einem Jahr sich einmal um die Sonne dreht, ist

$$\theta = \omega_{\rm Sun} t + \theta_0 , \quad \omega_{\rm Sun} = \frac{2\pi}{1 y ear}$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

Nun stehen ω und ω_{Sun} in keinem rationalen Verhältnis zueinander. Daher ist folgende Definition der Tageslänge mit Vorsicht zu betrachten: Zum Frühlingspunkt ist $\theta = \frac{\pi}{2}$ also $\cos \theta = 0$ und damit die rechte Seite von (3.1) gleich 0. Dies ergibt die Möglichkeit, bei Tagesaufgang der Sonne, bei dem $\cos (\varphi - \theta) = 0$ ist, die Zeit t = 0 festzulegen und die Zeitdifferenz bei Tagesaufgang der Sonne zum Herbstpunkt mit t = T zu messen. Indem man T durch die Anzahl der Tage, die verflossen sind, teilt, erhält man das Maß für einen Tag

$$1d = \frac{T}{\text{Anzahl Tage}}$$

und somit

$$1d = 24h, \quad 1h = 60min = 3600s.$$

Fig. 5: "Nimmt man die Position der Sonne während eines Jahres immer zur selben mittleren Ortszeit auf und überlagert die Fotos, so ergibt sich eine lang gestreckte Acht - das so genannte Analemma" aus "Zeitgleichung und Analemma" Sterne und Weltraum SuW 5|2015

Die neuerliche Festlegung der Sekunde unter Zuhilfenahme von Atomen ist in

author: H.W. Alt & G. Witterstein

title: Exercises

[Wikipedia: Sekunde] nachzulesen. Dies zeigt also wie schwierig es ist ein Zeitmaß festzulegen. Dazu

3.2 Siderischer Tag. Es bezeichnen

der (mittlere) siderische Tag (en: stellar day) 23h56min4.10sund der Sterntag (en: siderial day) 23h56min4.09s,

zwei verschiedene Methoden für ein Zeitmaß für eine Drehung der Erde, der siderische Tag basiert auf den Sternen und der Sterntag auf dem Frühlingspunkt. Aufgrund der Präzession der Erde ist der siderische Tag 8*ms* länger. Siehe [Wikipedia: Erdrotation] (beachte den unterschiedlichen Gebrauch in den Sprachen).

Die Rotation der Erde ist nicht

$$\frac{360^{\circ}}{d} = \frac{2\pi}{86400s} = 7.27 \cdot 10^{-5} \frac{rad}{s} \,,$$

da sich die Erde nicht um 360° an einem Tag dreht, sondern diese Drehung sich an einem siderischen Tag vollzieht, und deshalb

$$\frac{360^{\circ}}{23h56min4.1s} = 7.2921157 \cdot 10^{-5} \frac{rad}{s}$$

die richtige Rotation der Erde ist.

 $4 \ Cyclone$

4 Cyclone

Erklären Sie, dass sich ein Tiefdruckgebiet auf der Nordhalbkugel entgegengesetzt zum Uhrzeigersinn dreht und auf der Südhalbkugel der Erde mit dem Uhrzeigersinn.

Fig. 6: Tiefdruckgebiet auf der Nordhalbkugel der Erde

This is due to the Coriolis force, but it is not at all obvious how to explain this (see also Fig. 8). We have considered in [Script: Stmt I.5.5 "Air flow of the earth"] the coordinates outside the earth and transformed it into coordinates on the earth. Denoting by ω the angular velocity of the earth the mass and momentum equations in the coordinates on earth are

$$\partial_t \varrho + \operatorname{div}(\varrho v) = 0,$$

$$\varrho(\partial_t v + v \bullet \nabla v) + \operatorname{div}(p \operatorname{Id} - S) = \mathbf{f},$$
(4.1)

where the force is given by

$$\mathbf{f} = \varrho(\omega^2 I x + 2\omega A v) + \mathbf{f}_0,$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
(4.2)

Here \mathbf{f}_0 is the gravity (essential from the earth itself) and

$$\mathbf{f}_1 := \rho(\omega^2 I x + 2\omega A v)$$

is the part we consider here. It consists of the centrifugal force and the Coriolis force, and we also write

$$\frac{\mathbf{f}_1}{\rho\omega} = \omega I x + 2Av \,. \tag{4.3}$$

4.1 Orientation on earth. Let $x = R\xi$ with $|\xi| = 1$, where R > 0 is the distance to the center of earth. Define for $\xi \neq \pm \mathbf{e}_3$

author: H.W. Alt & G. Witterstein

title: Exercises

 $4 \ Cyclone$

$$\begin{split} e_{R} &= \xi & \text{radial unit vector,} \\ e_{W} &= \frac{1}{r} \begin{bmatrix} \xi_{2} \\ -\xi_{1} \\ 0 \end{bmatrix} & \text{west unit vector,} \\ e_{N} &= e_{W} \times e_{R} = \begin{bmatrix} -\frac{1}{r}\xi_{1}\xi_{3} \\ -\frac{1}{r}\xi_{2}\xi_{3} \\ r \end{bmatrix} & \text{north unit vector.} \\ e_{S} &= e_{R} \times e_{W} = -\mathbf{e}_{N} & \text{south unit vector, }. \end{split}$$

where

$$r := \sqrt{\xi_1^2 + \xi_2^2} \,.$$

Then $\{e_R, e_W, e_N\}$ is an orthonormal system of \mathbb{R}^3 .

Fig. 7: Tiefdruckgebiet auf der Südhalbkugel der Erde

Erläuterung: Es ist $\partial B_{R_{\text{Earth}}}(0)$ die Oberfläche der Erde und für $x \in \partial B_{R_{\text{Earth}}}(0)$ ist $T_x(\partial B_{R_{\text{Earth}}}(0))$ die "lokale" Umgebung. Es gilt

$$\operatorname{span} \left\{ e_W(x), e_N(x) \right\} = T_x(\partial \mathcal{B}_{R_{\operatorname{Earth}}}(0)),$$

was zeigt, dass die Westrichtung $e_W(x)$ und die Nordrichtung $e_N(x)$ die Umgebung aufspannen.

author: H.W. Alt & G. Witterstein

title: Exercises

 ${\bf 4.2}$ Lemma. We compute for the centrifugal term

$$I\mathbf{e}_{R} = r^{2}\mathbf{e}_{R} - r\xi_{3}\mathbf{e}_{N} ,$$

$$I\mathbf{e}_{W} = \mathbf{e}_{W} ,$$

$$I\mathbf{e}_{N} = \xi_{3}^{2}\mathbf{e}_{N} - r\xi_{3}\mathbf{e}_{R} ,$$

and for the Coriolois term

$$\begin{aligned} A\mathbf{e}_R &= r\mathbf{e}_W \,, \\ A\mathbf{e}_W &= -\frac{1}{r}I\mathbf{e}_R = \xi_3\mathbf{e}_N - r\mathbf{e}_R \,, \\ A\mathbf{e}_N &= -\xi_3\mathbf{e}_W \,. \end{aligned}$$

The axis of rotation is

$$\mathbf{e}_3 = r\mathbf{e}_N + \xi_3 \mathbf{e}_R \,.$$

4

Solution for centrifugal force.

$$I\mathbf{e}_{R} = I\xi = I\begin{bmatrix}\xi_{1}\\\xi_{2}\\\xi_{3}\end{bmatrix} = \begin{bmatrix}\xi_{1}\\\xi_{2}\\0\end{bmatrix} = r^{2}\begin{bmatrix}\xi_{1}\\\xi_{2}\\\xi_{3}\end{bmatrix} - r\xi_{3}\begin{bmatrix}-\frac{1}{r}\xi_{1}\xi_{3}\\-\frac{1}{r}\xi_{2}\xi_{3}\end{bmatrix}$$
$$= r^{2}\mathbf{e}_{R} - r\xi_{3}\mathbf{e}_{N},$$
$$I\mathbf{e}_{W} = \frac{1}{r}I\begin{bmatrix}\xi_{2}\\-\xi_{1}\\0\end{bmatrix} = \frac{1}{r}\begin{bmatrix}\xi_{2}\\-\xi_{1}\\0\end{bmatrix} = \mathbf{e}_{W},$$
$$I\mathbf{e}_{N} = I\begin{bmatrix}-\frac{1}{r}\xi_{1}\xi_{3}\\-\frac{1}{r}\xi_{2}\xi_{3}\end{bmatrix} = \begin{bmatrix}-\frac{1}{r}\xi_{1}\xi_{3}\\-\frac{1}{r}\xi_{2}\xi_{3}\end{bmatrix} = -\frac{1}{r}\xi_{3}\begin{bmatrix}\xi_{1}\\\xi_{2}\\0\end{bmatrix}$$
$$= -\frac{1}{r}\xi_{3}I\mathbf{e}_{R} = -\frac{1}{r}\xi_{3}(r^{2}\mathbf{e}_{R} - r\xi_{3}\mathbf{e}_{N}) = \xi_{3}^{2}\mathbf{e}_{N} - r\xi_{3}\mathbf{e}_{R}.$$

1		٦	

Solution for Coriolis force.

$$A\mathbf{e}_{R} = A\xi = A \begin{bmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{bmatrix} = \begin{bmatrix} \xi_{2} \\ -\xi_{1} \\ 0 \end{bmatrix} = r\mathbf{e}_{W},$$

$$A\mathbf{e}_{N} = A \begin{bmatrix} -\frac{1}{r}\xi_{1}\xi_{3} \\ -\frac{1}{r}\xi_{2}\xi_{3} \\ -\frac{1}{r}\xi_{2}\xi_{3} \end{bmatrix} = \begin{bmatrix} -\frac{1}{r}\xi_{2}\xi_{3} \\ +\frac{1}{r}\xi_{1}\xi_{3} \\ 0 \end{bmatrix} = -\frac{1}{r}\xi_{3} \begin{bmatrix} \xi_{2} \\ -\xi_{1} \\ 0 \end{bmatrix} = -\xi_{3}\mathbf{e}_{W},$$

$$A\mathbf{e}_{W} = \frac{1}{r}A \begin{bmatrix} \xi_{2} \\ -\xi_{1} \\ 0 \end{bmatrix} = \frac{1}{r} \begin{bmatrix} -\xi_{1} \\ -\xi_{2} \\ 0 \end{bmatrix}$$

$$= -\frac{1}{r}I\mathbf{e}_{R} = -\frac{1}{r}(r^{2}\mathbf{e}_{R} - r\xi_{3}\mathbf{e}_{N}) = \xi_{3}\mathbf{e}_{N} - r\mathbf{e}_{R}.$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

The equations to solve are the mass and momentum equation in (4.1). The momentum equation we write as

$$\dot{v} + \frac{1}{\varrho} \operatorname{div}(p\operatorname{Id} - S) = \omega(\omega Ix + 2Av) + \frac{1}{\varrho}\mathbf{f}_0,$$

where $\dot{v} = \partial_t v + v \bullet \nabla v$ and \mathbf{f}_0 is the gravitational force of the earth (the rest of \mathbf{f}_0 has minor effects)

$$\mathbf{f}_0 = \mathbf{\mathfrak{g}} \varrho
abla \phi_{ ext{Earth}} = -G arrho rac{x}{|x|^3} = -rac{G arrho}{R^2} \mathbf{e}_R$$

by using the notation in 4.1 (remember that R depends on x). Therefore the momentum equation reads

$$\dot{v} + \frac{1}{\varrho} \operatorname{div}(p\operatorname{Id} - S) = \omega (2Av + \omega RI\mathbf{e}_R) - \frac{G}{R^2}\mathbf{e}_R$$
 (4.4)

We now compute the coefficients of this equation.

4.3 Theorem. With

$$d := \frac{1}{\varrho} \operatorname{div}(p \operatorname{Id} - S),$$

the equation (4.4) is equivalent to

$$\begin{split} (\dot{v}+d) \bullet \mathbf{e}_W &= -2\omega\xi_3 v \bullet \mathbf{e}_N + 2\omega r v \bullet \mathbf{e}_R ,\\ (\dot{v}+d) \bullet \mathbf{e}_N &= 2\omega\xi_3 v \bullet \mathbf{e}_W - \omega^2 R r \xi_3 ,\\ (\dot{v}+d) \bullet \mathbf{e}_R &= -2\omega r v \bullet \mathbf{e}_W + \omega^2 R r^2 - \frac{G}{R^2} \end{split}$$

 $Solution. \ Let$

$$v = v_R \mathbf{e}_R + v_W \mathbf{e}_W + v_N \mathbf{e}_N \,.$$

By (4.4),

$$\dot{v} + d = \omega \left(2Av + \omega R(r^2 \mathbf{e}_R - r\xi_3 \mathbf{e}_N) \right) - \frac{G}{R^2} \mathbf{e}_R \,,$$

hence

$$\begin{aligned} \mathbf{e}_{W} \bullet (\dot{v} + d) &= 2\omega \mathbf{e}_{W} \bullet (Av) = 2\omega (A^{\mathrm{T}} \mathbf{e}_{W}) \bullet v = -2\omega (A\mathbf{e}_{W}) \bullet v \\ &= -2\omega (\xi_{3}\mathbf{e}_{N} - r\mathbf{e}_{R}) \bullet v = -2\omega (\xi_{3}v_{N} - rv_{R}) \,, \\ \mathbf{e}_{N} \bullet (\dot{v} + d) &= \omega \mathbf{e}_{N} \bullet (2Av + \omega R(r^{2}\mathbf{e}_{R} - r\xi_{3}\mathbf{e}_{N}) - \frac{G}{R^{2}}\mathbf{e}_{R}) \\ &= 2\omega \mathbf{e}_{N} \bullet (Av) - \omega^{2}Rr\xi_{3} = -2\omega \xi_{3}(A\mathbf{e}_{N}) \bullet v - \omega^{2}Rr\xi_{3} \\ &= 2\omega \xi_{3}\mathbf{e}_{W} \bullet v - \omega^{2}Rr\xi_{3} = 2\omega \xi_{3}v_{W} - \omega^{2}Rr\xi_{3} \,, \end{aligned}$$

and

$$\mathbf{e}_{R} \bullet (\dot{v} + d) = \omega \mathbf{e}_{R} \bullet \left(2Av + \omega R(r^{2}\mathbf{e}_{R} - r\xi_{3}\mathbf{e}_{N}) - \frac{G}{R^{2}}\mathbf{e}_{R} \right)$$
$$= 2\omega \mathbf{e}_{R} \bullet (Av) + \omega^{2}Rr^{2} - \frac{G}{R^{2}} = -2\omega(A\mathbf{e}_{R}) \bullet v + \omega^{2}Rr^{2} - \frac{G}{R^{2}}$$
$$= -2\omega rv_{W} + \omega^{2}Rr^{2} - \frac{G}{R^{2}}.$$

This gives the assertion.

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

Frage: Warum drehen sich Tiefdruckgebiete auf der Nordhalbkugel entgegen dem Uhrzeigersinn? (Eigentlich müsste es doch genau umgekehrt sein: Die Corioliskraft lenkt Winde auf der Nordhalbkugel nach rechts ab. Winde fließen auf Tiefdruckgebiete zu, werden nach rechts abgelenkt und daraus müsste sich eine Drehung mit dem Uhrzeigersinn ergeben. Eine Drehung entgegen dem Uhrzeigersinn kann ich mir nicht erklären.)

Antwort: Wegen der Corioliskraft werden Winde in Richtung Tiefdruckgebiet (TD) nach rechts abgelenkt, sie wandern also rechts am TD vorbei. Nun gibt es aber einen Druckgradienten in Richtung TD, der die Winde in Richtung TD ablenkt. Ist dieser nun stärker als die Corioloiskraft, so werden die Winde stärker nach links als nach rechts abgelenkt und wandern demnach gegen den Uhrzeigersinn um das TD. (Gilt alles für die Nordhalbkugel.)

Fig. 8: Von "gutefrage.net" 15.12.2010

There are two exchange mechanisms induced by the Coriolis force. One is between the west component and the radial component,

$$\begin{split} \dot{v} \bullet \mathbf{e}_W + \cdots &= \cdots + 2\omega r v \bullet \mathbf{e}_R \,, \\ \dot{v} \bullet \mathbf{e}_R + \cdots &= -2\omega r v \bullet \mathbf{e}_W + \dots \,, \end{split}$$

and the other one between the west and north component

$$\dot{v} \bullet \mathbf{e}_W + \dots = -2\omega\xi_3 v \bullet \mathbf{e}_N + \dots,$$

 $\dot{v} \bullet \mathbf{e}_N + \dots = 2\omega\xi_3 v \bullet \mathbf{e}_W - \dots.$

The first one is referred to in newspapers, since it reflects the fact, that a warm water temperature near the equator $(r \approx 1)$ will stimulate the formation of Hurricans. It means that we have on the water surface $\partial B_{R_{\text{Earth}}}(0)$ a boundary condition for $v \cdot \nu_{B_{R_{\text{Earth}}}(0)} = v \cdot e_R$, which is do to the evaporation of water into the atmosphere. The second one states, that on the northern hemisphere $(\xi_3 > 0)$ the velocity is turned to the right, since

$$\dot{v} \bullet \mathbf{e}_N + \mathrm{i} \, \dot{v} \bullet \mathbf{e}_W + \dots = -2\omega\xi_3 \mathrm{i}(v \bullet \mathbf{e}_N + \mathrm{i} \, v \bullet \mathbf{e}_W) + \dots$$

and is turned to the left on the southern hemisphere ($\xi_3 < 0$). So far we did not incorporate the pressure gradient $\nabla p = \operatorname{div}(p\operatorname{Id})$. Doing so, we obtain

$$\varrho \dot{v} \bullet \mathbf{e}_W + \nabla p \bullet \mathbf{e}_W - \dots = -2\varrho \omega \xi_3 v \bullet \mathbf{e}_N + \dots ,$$
$$\dot{v} \bullet \mathbf{e}_N + \nabla p \bullet \mathbf{e}_N - \dots = 2\rho \omega \xi_3 v \bullet \mathbf{e}_W - \dots .$$

If we now assume an area with (approximate) constant velocity v (with vanishing vertical components of v and p), this becomes

$$\nabla p \bullet \mathbf{e}_W - \dots = -2\varrho\omega\xi_3 v \bullet \mathbf{e}_N + \dots ,$$

$$\nabla p \bullet \mathbf{e}_N - \dots = 2\rho\omega\xi_3 v \bullet \mathbf{e}_W - \dots ,$$

or in the $\{\mathbf{e}_W, \mathbf{e}_N\}$ plane

$$\nabla p = -2\varrho\omega\xi_3\,\mathrm{i}\,v + \dots$$

author: H.W. Alt & G. Witterstein

title: Exercises

which (without the dots) is solvable for p, since the right-hand side is constant (without the dots). This means that if one looks in the direction of the wind (i.e. the *v*-direction), the pressure on the northern hemisphere ($\xi_3 > 0$) must be higher to the right-hand side and lower to the left-hand side, and the other way around on the southern hemisphere ($\xi_3 < 0$), that is, higher to the left-hand side and lower to the right-hand side. This implies that around a local low pressure area the wind is blowing counterclockwise on the northern hemisphere and turning clockwise on the southern hemisphere. A local vortex is constructed in [Script: Stmt IV.8.4], and it exists independent of the force term, it depends only on the boundary data. This means that on the northern hemisphere one has boundary data which move counterclockwise and on the southern hemisphere they move clockwise.

title: Exercises

5 Apropos Newton

In this section we show that the differential equation for the gravity field $\boldsymbol{\phi},$ which is

$$-\Delta \phi = \varrho$$

is a consequence of the Newton formula of a mass point with mass m at $\xi(t) \in \mathbb{R}^3$

$$\boldsymbol{\phi}(t,x) = \frac{m}{4\pi |x - \xi(t)|}$$

Or in other words, the differential equation is the closure of Newton's formula. This becomes mathematically clear, because

$$F(t,x) = \frac{1}{4\pi|x|}$$

is the fundamental solution of the negative Laplace operator $-\Delta$. We start with the differential equation, which is in part a repetition of the lecture. After that we approximate a given mass density ρ by a sequence of finite mass points.

If $\Omega \subset \mathbb{R} \times \mathbb{R}^3$ is a moving planet with mass density $\varrho(t, x)$, that is, the planet at time t is $\Omega_t := \{x \in \mathbb{R}^3 ; (t, x) \in \Omega\}$ and $x \mapsto \varrho(t, x)$ is 0 outside Ω_t . Then the planet induces a gravity field $\phi(t, x)$ for $(t, x) \in \mathbb{R} \times \mathbb{R}^3$, which satisfies the gravitational law

$$-\Delta[\boldsymbol{\phi}] = [\varrho] \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^3),$$

$$\boldsymbol{\phi}(t, x) \to 0 \text{ for } |x| \to \infty.$$

Using the fundamental solution of the Laplace operator, the solution of the gravity law is given by

$$\boldsymbol{\phi}(t,x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\varrho(t,y)}{|x-y|} \,\mathrm{dL}^3(y) \,.$$

We want to study how the planet moves in space. Therefore we have to consider mass and momentum of the planet, which is the incompressible Navier-Stokes equation in the distributional sense, that is, in $\mathscr{D}'(\mathbb{R} \times \mathbb{R}^3)$

$$\partial_t[\varrho] + \operatorname{div}[\varrho v] = 0,$$

$$\partial_t[\varrho v] + \operatorname{div}[\varrho v v^{\mathrm{T}} + p\mathrm{Id} - S] = [\mathbf{f}].$$
(5.1)

The force is given by, with the so-called "Newton force",

$$\mathbf{f} = \mathfrak{g}\varrho \nabla \boldsymbol{\phi} + \mathbf{f}_0 \,, \quad \mathbf{f}_{\text{Newton}} = \mathfrak{g}\varrho \nabla \boldsymbol{\phi} \,, \tag{5.2}$$

where $\mathfrak{g} = 4\pi G$ with G the gravitational constant, and with \mathbf{f}_0 being the influence from outside, for example from other planetary objects. We mention, that in the formula the product $\rho \nabla \boldsymbol{\phi}$ is well defined, because ρ and $\nabla \boldsymbol{\phi}$ are L^{∞} -functions. Therefore in certain limit procedures we have be cautious of how the product is defined.

author: H.W. Alt & G. Witterstein

title: Exercises

Mathematical approach

We now take for simplicity the particular case that Ω_t is independent of time, say $\Omega_t = D$ with smooth boundary ∂D , and that the planet is assumed to be incompressible, that is $\varrho(t, x) = \varrho_0 = \text{const} > 0$ for $x \in D$ and 0 outside D. Hence we have for the total mass

$$M := \int_{\mathbb{R}^3} \varrho(t, y) \, \mathrm{d} \mathrm{L}^3(y) = \int_D \varrho_0 \, \mathrm{d} \mathrm{L}^3(y) = \varrho_0 \mathrm{L}^3(D) \, .$$

We consider the set of points $\xi\in S_\epsilon:=\overline{D}\cap(\epsilon\mathbb{Z}^3)$ and let

$$Q_{\xi} := \{ x \in \mathbb{R}^3 ; \ \xi_i - \frac{\epsilon}{2} \le x_i < \xi_i + \frac{\epsilon}{2} \}, \quad m_{\epsilon} := \varrho_0 \cdot \epsilon^3.$$

Then the following is true.

Fig. 9: Approximation of the domain. Above left: A "nebula" with ρ as mass density. Above right: Approximation. Below right: Introduction of mass points. Below left: An "open star cluster" with stars $\xi \in S_{\varepsilon}$.

5.1 Lemma. As $\epsilon \to 0$

$$\sum_{\xi \in S_{\varepsilon}} m_{\epsilon} \boldsymbol{\delta}_{\xi} \longrightarrow [\varrho] \quad \text{ in } \mathscr{D}'(\mathbb{R}^3).$$

where $\boldsymbol{\delta}_{\xi}$ is the Dirac distribution at point ξ .

author: H.W. Alt & G. Witterstein

title: Exercises

Solution. We have for $\zeta \in \mathscr{D}(\mathbb{R}^3)$, since Q_{ξ} are disjoint sets,

$$\left\langle \zeta , \sum_{\xi \in S_{\epsilon}} m_{\epsilon} \boldsymbol{\delta}_{\xi} \right\rangle = \sum_{\xi \in S_{\epsilon}} \zeta(\xi) m_{\epsilon} = \sum_{\xi \in S_{\epsilon}} L^{3}(Q_{\xi}) \varrho_{o} \zeta(\xi)$$
$$= \sum_{\xi \in S_{\epsilon}} \int_{Q_{\xi}} \varrho_{0} \zeta(x) \, \mathrm{d}x + \mathcal{O}(\epsilon) = \int_{\overline{D}} \varrho_{0} \zeta(x) \, \mathrm{d}x + \mathcal{O}(\epsilon) \longrightarrow \langle \zeta, [\varrho] \rangle .$$

We now consider the potential of the mass points $\xi \in S_{\epsilon}$ with mass m

$$\phi_{\xi,m}(x) := \frac{m}{4\pi |x - \xi|} \,. \tag{5.3}$$

If we sum up these potentials with $m = m_{\varepsilon}$ we have approximately the gravity potential ϕ_D of ρ , see 5.3, which gives mathematically the evidence that the existence of the potential is caused by the gravity of the local atoms.

Physical approach

On a large scale one can observe open star clusters (*de:* offene Sternhaufen) where the gravity potentials are approximately given by the gravity field of single stars located at ξ . Here the centers of the stars are not distributed uniformly as in the above simple mathematical example and also the masses $m_{\epsilon,\xi}$ are different. The finite set of stars $\xi \in S_{\epsilon}$ we denote again by S_{ϵ} , where the number of stars gets larger is ϵ gets smaller. In reality the star is a body with density ϱ_{ϵ} in $B_{\epsilon}(\xi)$ and the mass $m_{\epsilon,\xi}$ is

$$m_{\epsilon,\xi} = \int_{\mathcal{B}_{\epsilon}(\xi)} \varrho_{\epsilon}(x) \, \mathrm{d}x \quad \text{and} \quad M_{\varepsilon} := \sum_{\xi \in S_{\epsilon}} m_{\epsilon,\xi} = \sum_{\xi \in S_{\epsilon}} \int_{\mathcal{B}_{\epsilon}(\xi)} \varrho_{\epsilon}(x) \, \mathrm{d}x$$

the total mass of the stars belonging to the cluster. We prove

5.2 Lemma. Lemma 5.1 holds under the assumption that ρ_{ϵ} are uniformly bounded and that $\rho_{\epsilon} \to \rho$ in $L^1(D)$ as $\epsilon \to 0$.

Solution.

$$\left\langle \zeta , \sum_{\xi \in S_{\epsilon}} m_{\epsilon,\xi} \boldsymbol{\delta}_{\xi} \right\rangle = \sum_{\xi \in S_{\epsilon}} \zeta(\xi) m_{\epsilon,\xi} = \sum_{\xi \in S_{\epsilon}} \int_{B_{\epsilon}(\xi)} \varrho_{\epsilon}(x) \zeta(\xi) \, \mathrm{d}x$$
$$= \sum_{\xi \in S_{\epsilon}} \int_{B_{\epsilon}(\xi)} \varrho_{\epsilon}(x) \zeta(x) \, \mathrm{d}x + \mathcal{O}(\epsilon) = \int_{D} \varrho_{\epsilon}(x) \zeta(x) \, \mathrm{d}x + \mathcal{O}(\epsilon)$$
$$\longrightarrow \int_{D} \varrho(x) \zeta(x) \, \mathrm{d}x = \left\langle \zeta , [\varrho] \right\rangle \,.$$

This lemma implies that one gets the following version of a theorem for the potentials $\phi_{\xi,m_{\epsilon,\epsilon}}$ in (5.3).

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

5.3 Theorem. It follows immediately from the previous lemma, that

$$\left[\sum_{\xi\in S_{\varepsilon}} \boldsymbol{\phi}_{\xi,m_{\epsilon,\xi}}\right] \to [\boldsymbol{\phi}_D] \quad \text{ in } \mathscr{D}'(\mathbb{R}^3),$$

where $\boldsymbol{\phi}_D$ is given by

$$\boldsymbol{\phi}_D(x) = \int_D \frac{\varrho(y)}{4\pi |x-y|} \,\mathrm{d}y \,.$$

Solution. We define for $\zeta \in \mathscr{D}(\mathbb{R}^3)$ (we can really take $\zeta \in C_0^0(\mathbb{R}^3)$) a function $\eta \in C^0(\mathbb{R}^3)$ by

$$\eta(y) := \int_{\mathbb{R}^3} \frac{\zeta(x)}{4\pi |x-y|} \,\mathrm{d}x$$

Then

$$\left\langle \zeta, \left[\sum_{\xi \in S_{\epsilon}} \boldsymbol{\phi}_{\epsilon, m_{\epsilon, \xi}} \right] \right\rangle = \sum_{\xi \in S_{\epsilon}} \int_{\mathbb{R}^{3}} \zeta(x) \boldsymbol{\phi}_{\epsilon, m_{\epsilon, \xi}}(x) \, \mathrm{d}x$$
$$= \sum_{\xi \in S_{\epsilon}} \int_{\mathbb{R}^{3}} \zeta(x) \frac{m_{\epsilon, \xi}}{4\pi |x - \xi|} \, \mathrm{d}x = \sum_{\xi \in S_{\epsilon}} m_{\epsilon, \xi} \eta(\xi)$$
$$= \sum_{\xi \in S_{\epsilon}} \langle \eta, m_{\epsilon, \xi} \boldsymbol{\delta}_{\xi} \rangle = \left\langle \eta, \sum_{\xi \in S_{\epsilon}} m_{\epsilon, \xi} \boldsymbol{\delta}_{\xi} \right\rangle.$$

We can apply lemma 5.2 to η , because the support of the distributions in space is bounded (the distribution δ_{ξ} has support $\{\xi\} \subset \overline{D}$). Therefore we can change η arbitrarily outside this support, see also [alt-distributions: Sec 4 Other function spaces]). Therefore it follows from the previous lemma 5.2 that it converges as $\epsilon \to 0$ to

$$\left\langle \eta, \sum_{\xi \in S_{\epsilon}} m_{\epsilon,\xi} \boldsymbol{\delta}_{\xi} \right\rangle \longrightarrow \left\langle \eta, [\varrho] \right\rangle \quad \text{(by lemma 5.2)}$$
$$= \int_{D} \eta(y) \varrho(y) \, \mathrm{d}y = \int_{D} \int_{\mathbb{R}^{3}} \frac{\zeta(x) \varrho(y)}{4\pi |x - y|} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_{\mathbb{R}^{3}} \zeta(x) \Big(\int_{D} \frac{\varrho(y)}{4\pi |x - y|} \, \mathrm{d}y \Big) \, \mathrm{d}x = \int_{\mathbb{R}^{3}} \zeta(x) \boldsymbol{\phi}_{D}(x) \, \mathrm{d}x = \left\langle \zeta, [\boldsymbol{\phi}_{D}] \right\rangle \,.$$

Hence we have shown that $\sum_{\xi \in S_{\epsilon}} \phi_{\epsilon, m_{\epsilon, \xi}}$ converges to ϕ_D .

Since the solution of the gravity equation is unique, and due to the fundamental solution of $-\Delta$, the potential $\boldsymbol{\phi} = \boldsymbol{\phi}_D$ is the solution of

div
$$[-\nabla \phi] = [\varrho]$$
 with $\phi(x) \to 0$ as $|x| \to \infty$.

Newton's force

Nun zeigen wir jetzt, wie sich die Newton Kraft $\mathbf{f}_{\text{Newton}}$ beim Übergang zu einem mit Punkten beschriebenem Planetensystem verhält. Wir betrachten dabei den zeitabhängigen Fall und gehen von den Gleichungen (5.1) mit S = 0 aus:

$$\partial_t[\varrho] + \operatorname{div}[\varrho v] = 0,$$

$$\partial_t[\varrho v] + \operatorname{div}[\varrho v v^{\mathrm{T}} + p \operatorname{Id}] = \mathbf{f}_{\operatorname{Newton}} + \mathbf{f}_0,$$
(5.4)

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

wobei die "Newton-Kraft" gegeben ist durch

$$\mathbf{f}_{\text{Newton}} = [\mathfrak{g}\varrho\nabla\phi], -\Delta[\phi] = [\varrho].$$
(5.5)

Hierbei sind die Differentialgleichungen im klassischen Sinne zu verstehen, wenn ρ die Massendichte eines Gases ist, ansonsten, wenn ρ wie zu Beginn beschrieben nur eine L^{∞} -Funktion gegeben ist, dann sind die Distributionsgleichungen in $\mathscr{D}'(\mathbb{R} \times \mathbb{R}^3)$ zu verstehen.

Wir nehmen nun an, dass die endliche Menge S_t die Sterne beschreibt, wobei die Position des "Zentrums" von $t \mapsto \xi(t) \in S_t$ jetzt noch nicht genau beschrieben sei, sondern es sei lediglich gesagt, dass $\varrho(t)$ die Dichte des Sterns in $B_{\epsilon}(\xi(t))$ beschreibt, also, siehe Fig. 10,

$$\begin{split} \mathcal{S} &:= \left\{ \xi \text{ stetig} \; ; \; \xi(t) \in \mathcal{S}_t \text{ für alle } t \in \mathbb{R} \right\},\\ \text{supp } \varrho \subset \left\{ \; (t,x) \; ; \; x \in \bigcup_{\xi \in \mathcal{S}} \mathcal{B}_{\epsilon}(\xi(t)) \; \right\} \; , \quad \int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t,x) \, \mathrm{d}x = m_{\xi} \, , \end{split}$$

wobei $m_{\xi} > 0$ die zeitunabhängige Masse des Sterns $\xi(t) \in S_t$ sei. Dabei sei ϵ so klein gewählt, dass die Umgebungen $\overline{B_{\epsilon}(\xi(t))}$ disjunkt seien und im Rest ein Vakuum oder sehr dünnes Gas herrsche, weshalb also

$$\varrho = 0, \quad p = p' = \text{const} \quad \text{in} \quad \left\{ (t, x) \ ; \ x \notin \bigcup_{\xi \in \mathcal{S}} \mathcal{B}_{\epsilon}(\xi(t)) \ \right\}$$

vorausgesetzt sei. Dies inpliziert, dass wir das System (nur) solange betrachten, wie die Sterne nicht kollidieren.

Fig. 10:

Nun zu den Geschwindigkeiten. Wir setzen zum Stern ξ

$$v_{\xi}(t) := \frac{1}{m_{\xi}} \int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t, x) v(t, x) \, \mathrm{d}x \quad \text{ und } \quad u_{\xi} := v - v_{\xi}$$

oder anders ausgedrückt $u_{\xi}(t, x) := v(t, x) - v_{\xi}(t)$ in $B_{\epsilon}(\xi(t))$ mit

$$\int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t, x) (v(t, x) - v_{\xi}(t)) \,\mathrm{d}x = 0 \,.$$

Dabei ist $v_{\xi}(t)$ die Fortpflanzungsgeschwindigkeit des Sterns als Ganzem und $u_{\xi}(t,x)$ gibt an, wie sich der Stern dreht. Während die Drehung des Sterns recht unabhängig ist, ist v_{ξ} von der Wirkung des Schwerefeldes abhängig.

author: H.W. Alt & G. Witterstein

title: Exercises

5.4 Lemma. Im Falle, dass der Stern ein fester Körper ist mit $t \mapsto \xi(t)$ als dem Schwerpunkt, ist v_{ξ} ist die Geschwindigkeit des Schwerpunktes, d.h. $v_{\xi} = \dot{\xi}$.

Solution. Wir nehmen die Notationen von [Script: Sec I.6] an, und zwar für einen einzelnen Stern. Insbesondere haben wir

$$v(t,x) = \partial_t \varphi(t,\underline{x}) \text{ für } x = \varphi(t,\underline{x}).$$
(5.6)

Nun gilt nach [Script: Equ (I6.2)] und da $\underline{\rho}$ von t unabhängig ist (folgt aus der Massenerhaltung)

$$m_{\xi} = \int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t, x) \, \mathrm{d}x = \int_{\mathcal{B}} \varrho(t, \varphi(t, \underline{x})) J(t, \underline{x}) \, \mathrm{d}\underline{x} = \int_{\mathcal{B}} \underline{\varrho}(\underline{x}) \, \mathrm{d}\underline{x} \,.$$

Weiter ist ξ als Schwerpunkt gegeben durch

$$\xi(t) = \frac{1}{m_{\xi}} \int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t, x) x \, \mathrm{d}x \quad \text{also} \quad \int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t, x) (x - \xi(t)) \, \mathrm{d}x = 0 \,.$$

Es folgt wegen (5.6)

$$\begin{split} m_{\xi} v_{\xi}(t) &= \int_{\mathcal{B}_{\epsilon}(\xi)} \varrho(t, x) v(t, x) \, \mathrm{d}x = \int_{\mathcal{B}} \varrho(t, \varphi(t, \underline{x})) v(t, \varphi(t, \underline{x})) J(t, \underline{x}) \, \mathrm{d}\underline{x} \\ &= \int_{\mathcal{B}} \underline{\varrho}(\underline{x}) v(t, \varphi(t, \underline{x})) \, \mathrm{d}\underline{x} = \int_{\mathcal{B}} \underline{\varrho}(\underline{x}) \partial_{t} \varphi(t, \underline{x}) \, \mathrm{d}\underline{x} \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{B}} \underline{\varrho}(\underline{x}) \varphi(t, \underline{x}) \, \mathrm{d}\underline{x} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{B}_{\epsilon}(\xi(t))} \varrho(t, x) x \, \mathrm{d}x = \frac{\mathrm{d}}{\mathrm{d}t} \left(m_{\xi}\xi(t) \right). \end{split}$$

Da m_{ξ} konstant ist, folgt $v_{\xi}(t) = \partial_t \xi(t)$.

Die Massen- und Impulserhaltung schreiben sich also als System in den Umgebungen $B_{\epsilon}(\xi(t))$ der Sterne. Das heißt, dass die Physik der Sterne nur gekoppelt ist durch die Schwerkraft, also ist keine Kraftübertragung durch Licht und kein Sternenwind vorhanden. Somit gilt in der jeweiligen Umgebung

$$\mathcal{U}_{\epsilon,\xi} := \left\{ (t,x) \; ; \; x \in \mathcal{B}_{\epsilon}(\xi(t)) \right\}$$

von ξ , wenn $\varrho_{\xi} := \varrho$ auf $\mathcal{U}_{\epsilon,\xi}$,

$$\partial_t[\varrho_{\xi}] + \operatorname{div}[\varrho_{\xi}v] = 0, \quad v(t,x) = v_{\xi}(t) + u_{\xi}(t,x),
\partial_t[\varrho_{\xi}v] + \operatorname{div}[\varrho_{\xi}v\,v^{\mathrm{T}} + (p-p')\mathrm{Id}] = \mathfrak{g}f_{\xi} + \mathbf{f}_0,$$
(5.7)

wobei

$$f_{\boldsymbol{\xi}} := [\varrho_{\boldsymbol{\xi}}
abla \boldsymbol{\phi}]$$
 .

Zerlegen wir $\boldsymbol{\phi}$ in

$$\boldsymbol{\phi} = \sum_{\xi \in \mathcal{S}} \boldsymbol{\phi}_{\epsilon,\xi} , \quad -\Delta[\boldsymbol{\phi}_{\epsilon,\xi}] = [\varrho_{\xi}] ,$$

so ist, da $\phi_{\epsilon,\xi'}$ für $\xi' \neq \xi$ in $\mathcal{U}_{\epsilon,\xi}$ eine glatte Funktion darstellt,

$$f_{\xi} := [\varrho_{\xi} \nabla \boldsymbol{\phi}_{\epsilon,\xi}] + \sum_{\xi' \text{ with } \xi' \neq \xi} [\varrho_{\xi} \nabla \boldsymbol{\phi}_{\epsilon,\xi'}], \qquad (5.8)$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

wobei wir also den Term $\rho_{\xi} \nabla \phi_{\epsilon,\xi}$ extra behandeln müssen, da er keinen sinnvollen Limes enthält.

In Bearbeitung

For a finite system S of stars or planets the equations of Newtons physics based on ODE's are

$$m_{\xi}\ddot{\xi} = \sum_{\xi' \text{ with } \xi' \neq \xi} \quad \text{for } \xi \in S.$$
(5.9)

Then (5.1) becomes, with S = 0,

$$\partial_t \varrho_\epsilon + \operatorname{div}(\varrho_\epsilon v) = 0, \partial_t(\varrho_\epsilon v) + \operatorname{div}(\varrho_\epsilon v v^{\mathrm{T}} + p_\epsilon \operatorname{Id}) = \mathbf{f}_{\operatorname{Newton}},$$
(5.10)

where $\mathbf{f}_{\text{Newton}}$ is the force induced by the overall gravity potential $\boldsymbol{\phi}_{\epsilon}$ on the mass in the equations, which is ϱ_{ϵ} .

The main question is how the term $\mathbf{f}_{\text{Newton}} = \varrho_{\epsilon} \nabla \boldsymbol{\phi}_{\epsilon}$ shows up in the limit. Here $\boldsymbol{\phi}_{\epsilon}$ is the gravity potential of the entire mass distribution ϱ_{ϵ} .

In the limit we denote by ϕ_{ξ} the potential generated by $\xi \in \mathcal{S}$, that is

$$-\Delta[\boldsymbol{\phi}_{\xi}] = m_{\xi}\boldsymbol{\delta}_{\xi} \quad \text{or} \quad \boldsymbol{\phi}_{\xi}(x) = \frac{m_{\xi}}{4\pi|x-\xi|} \,,$$

therefore the potential

$$\boldsymbol{\phi} := \sum_{\xi \in \mathcal{S}} \boldsymbol{\phi}_{\xi} \quad \text{satifies} \quad -\Delta[\boldsymbol{\phi}] = \sum_{\xi \in \mathcal{S}} m_{\xi} \boldsymbol{\delta}_{\xi} \,, \tag{5.11}$$

therefore we have the identities

5.5 Lemma. As $\epsilon \to 0$

$$[\varrho_{\epsilon}] \longrightarrow \sum_{\xi \in \mathcal{S}} m_{\xi} \boldsymbol{\delta}_{\xi} \quad \text{and} \quad [\boldsymbol{\phi}_{\epsilon}] \longrightarrow [\boldsymbol{\phi}]$$

in the space of distributions.

Solution.

It is not obvious what the limit of $\rho_{\epsilon} \nabla \phi_{\epsilon}$ is. On one hand $[\rho_{\epsilon}]$ near the point ξ converges to $m_{\xi} \delta_{\xi}$ and on the other hand $[\nabla \phi_{\epsilon}]$ converges to $[\nabla \phi]$ which because of (5.11) has a sigularity at ξ . Therfore let us compute

$$\varrho_{\epsilon} \nabla \boldsymbol{\phi}_{\epsilon} =$$

author: H.W. Alt & G. Witterstein

title: Exercises

6 Spheroid

6 Spheroid

We consider a planet, which we assume is incompressible, that is, it occupies at time t a region

$$\Omega_t = \{ x \in \mathbb{R}^3 ; (t, x) \in \Omega \}, \quad \Omega \subset \mathbb{R} \times \mathbb{R}^3,$$

and $\varrho(t, x) = \varrho_0 = \text{const} > 0$ for $(t, x) \in \Omega$ (see the introduction in section 5). If the planet is not rotating, the shape is a ball $\Omega - t = B_R(0)$ and the potential is

$$\boldsymbol{\phi}_0(t,x) = \frac{\varrho_0}{4\pi} \int_{\mathrm{B}_R(0)} \frac{\mathrm{d}\mathrm{L}^3(y)}{|x-y|} \,,$$

in particular,

$$\boldsymbol{\phi}_0(t,x) = rac{M}{4\pi |x|}$$
 outside $\mathrm{B}_R(0)$.

If the planet is rotating with a constant angular speed ω , by Newton's result (see [Script: Stmt IV.16.4 "Rotating planet"]) the shape of the planet is a spheroid (we let the axis of rotation be the x_3 -axis)

$$\Omega_t = \mathbb{S}(a,c) := \left\{ x \in \mathbb{R}^3 \ ; \ \frac{x_1^2 + x_2^2}{a^2} + \frac{x_3^2}{c^2} \le 1 \right\} \text{ with } 0 < c < a \, .$$

Consequently, the gravity potential is

$$\boldsymbol{\phi}(t,x) = \frac{\varrho_0}{4\pi} \int_{\mathbb{S}(a,c)} \frac{\mathrm{d} \mathbf{L}^3(y)}{|x-y|} \, .$$

Show the following:

6.1 Theorem. For the spheroid the gravity potential satifies

$$\boldsymbol{\phi}(t,x) = \boldsymbol{\phi}_0(t,x) + \frac{M(a^2 - c^2)}{160\pi^2 |x|^3} (|\widehat{x}_1|^2 + |\widehat{x}_2|^2 - 2|\widehat{x}_3|^2) + \mathcal{O}\left(\frac{1}{|x|^5}\right)$$

= $\boldsymbol{\phi}_0(t,x) \cdot \left(1 + \frac{a^2 - c^2}{40\pi |x|^2} (|\widehat{x}_1|^2 + |\widehat{x}_2|^2 - 2|\widehat{x}_3|^2) + \mathcal{O}\left(\frac{1}{|x|^4}\right)\right)$

as $|x| \to \infty$. Here $\hat{x} := \frac{x}{|x|}$ and ϕ_0 is the gravity potential of a ball with same total mass M as the spheroid.

Solution. For the difference of the potentials we have

$$\boldsymbol{\phi}(t,x) - \boldsymbol{\phi}_0(t,x) = \frac{\varrho_0}{4\pi} \Big(\int_{\mathbb{S}(a,c)} \frac{\mathrm{d}\mathrm{L}^3(y)}{|x-y|} - \int_{\mathrm{B}_R(0)} \frac{\mathrm{d}\mathrm{L}^3(y)}{|x-y|} \Big) \,.$$

We know

$$\frac{4\pi}{3}R^3 = L^3(B_R(0)) = L^3(\mathbb{S}(a,c)) = \frac{4\pi}{3}ca^2,$$
$$M = \varrho_0 L^3(B_R(0)) = \varrho_0 L^3(\mathbb{S}(a,c)),$$

since the medium is incompressible. Hence defining the harmonic function

$$h(z) := \frac{1}{4\pi |z|}$$
 for $z \in \mathbb{R}^3$,

author: H.W. Alt & G. Witterstein

title: Exercises

6 Spheroid

we obtain from this identity for x outside $\mathbb{S}(a,c)$ and $\mathbb{B}_R(0)$ by the mean value property

$$\begin{split} & \pmb{\phi}_0(t,x) = \frac{\varrho_0}{4\pi} \int_{\mathcal{B}_R(0)} \frac{\mathrm{d}\mathcal{L}^3(y)}{|x-y|} = \varrho_0 \int_{\mathcal{B}_R(0)} h(x-y) \, \mathrm{d}\mathcal{L}^3(y) \\ & = \frac{M}{\mathcal{L}^3(\mathcal{B}_R(0))} \int_{\mathcal{B}_R(0)} h(x-y) \, \mathrm{d}\mathcal{L}^3(y) = Mh(x) = \frac{\varrho_0}{4\pi} \int_{\mathbb{S}(a,c)} \frac{\mathrm{d}\mathcal{L}^3(y)}{|x|} \,. \end{split}$$

Consequently,

$$\begin{split} \boldsymbol{\phi}(t,x) - \boldsymbol{\phi}_0(t,x) &= \frac{\varrho_0}{4\pi} \int_{\mathbb{S}(a,c)} \left(\frac{1}{|x-y|} - \frac{1}{|x|} \right) \mathrm{d}\mathrm{L}^3(y) \\ &= \frac{\varrho_0}{4\pi} \int_{\mathbb{S}(a,c)} \left(h(x-y) - h(x) \right) \mathrm{d}\mathrm{L}^3(y) \,. \end{split}$$

We use the expansion

$$\begin{split} h(x-y) &= h(x) - y \bullet \nabla h(x) + \frac{1}{2} y \bullet \mathbf{D}^2 h(x) y \\ &\quad -\frac{1}{6} \mathbf{D}^3 h(x)(y, y, y) + \mathcal{R} \\ \mathcal{R} &:= -\int_0^1 \int_0^{s_1} \int_0^{s_2} \int_0^{s_2} \mathbf{D}^4 h(x - s_4 y)(y, y, y, y) \, \mathrm{d}s_4 \, \mathrm{d}s_3 \, \mathrm{d}s_2 \, \mathrm{d}s_1 \\ &= \mathcal{O}\left(\frac{|y|^4}{|x|^5}\right) \text{ for } |x| \text{ large and } y \in \mathbb{S}(a, c) \end{split}$$

to write

$$\begin{aligned} &\frac{4\pi}{\varrho_0}(\boldsymbol{\phi}(t,x) - \boldsymbol{\phi}_0(t,x)) = \int_{\mathbb{S}(a,c)} \left(h(x-y) - h(x)\right) d\mathrm{L}^3(y) \\ &= -\underbrace{\int_{\mathbb{S}(a,c)} y \bullet \nabla h(x) d\mathrm{L}^3(y)}_{= 0} + \frac{1}{2} \int_{\mathbb{S}(a,c)} y \bullet \mathrm{D}^2 h(x) y d\mathrm{L}^3(y) \\ &= 0 \\ -\frac{1}{6} \underbrace{\int_{\mathbb{S}(a,c)} \mathrm{D}^3 h(x)(y,y,y) d\mathrm{L}^3(y)}_{= 0} + \mathcal{O}\left(\frac{R^7}{|x|^5}\right) \text{ for } |x| \text{ large.} \end{aligned}$$

And with

$$d_i := \int_{\mathbb{S}(a,c)} y_i^2 \, \mathrm{dL}^3(y) \,, \quad d := d_1 = d_2 \,, \tag{6.1}$$

author: H.W. Alt & G. Witterstein

title: Exercises

6 Spheroid

we compute

$$\begin{split} &\int_{\mathbb{S}(a,c)} y \bullet \mathbf{D}^2 h(x) y \, \mathrm{dL}^3(y) = \sum_{ij} \frac{3x_i x_j - |x|^2 \delta_{ij}}{4\pi |x|^5} \int_{\mathbb{S}(a,c)} y_i y_j \, \mathrm{dL}^3(y) \\ &= \sum_i \frac{3x_i^2 - |x|^2}{4\pi |x|^5} \int_{\mathbb{S}(a,c)} y_i^2 \, \mathrm{dL}^3(y) = \sum_i \frac{3x_i^2 - |x|^2}{4\pi |x|^5} d_i \\ &= \frac{1}{4\pi |x|^5} \left((3x_1^2 - |x|^2) d_1 + (3x_2^2 - |x|^2) d_2 + (3x_3^2 - |x|^2) d_3 \right) \\ &= \frac{1}{15|x|^5} \left((3(x_1^2 + x_2^2) - 2|x|^2) ca^4 + (3x_3^2 - |x|^2) c^3 a^2 \right) \\ &= \frac{ca^2}{15|x|^5} (x_1^2 + x_2^2 - 2x_3^2) (a^2 - c^2) \end{split}$$

using the lemma below. We thus obtain

$$\frac{8\pi}{\varrho_0}(\boldsymbol{\phi}(t,x) - \boldsymbol{\phi}_0(t,x)) = \frac{ca^2}{15|x|^5}(x_1^2 + x_2^2 - 2x_3^2)(a^2 - c^2) + \mathcal{O}\left(\frac{R^7}{|x|^5}\right),$$

and therefore

$$\begin{split} \boldsymbol{\phi}(t,x) &- \boldsymbol{\phi}_0(t,x) = \frac{\varrho_0 c a^2}{120\pi |x|^5} (x_1^2 + x_2^2 - 2x_3^2) (a^2 - c^2) + \mathcal{O}\left(\frac{R^7}{|x|^5}\right) \\ &= \frac{\varrho_0 c a^2}{120\pi |x|^3} (\hat{x}_1^2 + \hat{x}_2^2 - 2\hat{x}_3^2) (a^2 - c^2) + \mathcal{O}\left(\frac{R^7}{|x|^5}\right) \\ &= \frac{M(a^2 - c^2)}{160\pi^2 |x|^3} (\hat{x}_1^2 + \hat{x}_2^2 - 2\hat{x}_3^2) + \mathcal{O}\left(\frac{R^7}{|x|^5}\right) \,. \end{split}$$

6.2 Lemma. If d_i are defined as in (6.1),

$$d_1 = d_2 = \frac{1}{2}(d_1 + d_2) = \frac{4\pi}{15}ca^4$$
, $d_3 = \frac{4\pi}{15}c^3a^2$.

Solution first version. We define $r(y_3) > 0$ by

$$r(y_3)^2 = a^2 \cdot \left(1 - \frac{y_3^2}{c^2}\right)$$

Then

$$d_{3} = \int_{\mathbb{S}(a,c)} y_{3}^{2} \, \mathrm{d}y = \int_{-c}^{c} y_{3}^{2} \mathrm{L}^{2}(\mathrm{B}_{r(y_{3})}(0)) \, \mathrm{d}y_{3}$$

= $\pi a^{2} \int_{-c}^{c} y_{3}^{2} \left(1 - \frac{y_{3}^{2}}{c^{2}}\right) \, \mathrm{d}y_{3} = 2\pi a^{2} \int_{0}^{c} \left(y_{3}^{2} - \frac{y_{3}^{4}}{c^{2}}\right) \, \mathrm{d}y_{3}$
= $2\pi a^{2} \left(\frac{c^{3}}{3} - \frac{c^{5}}{5c^{2}}\right) = \frac{4\pi a^{2}c^{3}}{15},$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

 $6 \ Spheroid$

and

$$\begin{split} &\frac{1}{2}(d_1+d_2) = \frac{1}{2} \int_{\mathbb{S}(a,c)} (y_1^2+y_2^2) \,\mathrm{d}y \\ &= \frac{1}{2} \int_{-c}^c \int_{\mathrm{B}_{r(y_3)}(0)} (y_1^2+y_2^2) \,\mathrm{d}\mathrm{L}^2(y_1,y_2) \,\mathrm{d}y_3 = \pi \int_{-c}^c \int_0^{r(y_3)} r^3 \,\mathrm{d}r \,\mathrm{d}y_3 \\ &= \frac{\pi}{4} \int_{-c}^c r(y_3)^4 \,\mathrm{d}y_3 = \frac{\pi}{2} \int_0^c r(y_3)^4 \,\mathrm{d}y_3 \\ &= \frac{\pi}{4} a^4 \int_0^c \left(1 - \frac{y_3^2}{c^2}\right)^4 \,\mathrm{d}y_3 = \frac{4\pi a^4 c}{15} \,. \end{split}$$

Solution second version. We introduce in S(a,c) so called "polar coordinates" $y = (y_1, y_2, y_3) = \tau(r, \psi, \varphi)$ by

$$y_1 = \tau_1(r, \psi, \varphi) = ar\sin\psi\cos\varphi ,$$

$$y_2 = \tau_2(r, \psi, \varphi) = ar\sin\psi\sin\varphi ,$$

$$y_3 = \tau_3(r, \psi, \varphi) = cr\cos\psi ,$$

where

 $0 < r < 1, \quad 0 \leq \psi < \pi, \quad 0 \leq \varphi < 2\pi.$

The determinant is

$$\det \mathrm{D}\tau(r,\psi,\varphi) = a^2 c r^2 \sin\psi.$$

Then

$$d_{1} = \int_{\mathbb{S}(a,c)} y_{1}^{2} dy = \int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2\pi} (ar\sin\psi\cos\varphi)a^{2}cr^{2}\sin\psi\,d\varphi\,d\psi\,dr$$

= $a^{4}c \underbrace{\int_{0}^{1} r^{4} dr}_{=\frac{1}{5}} \underbrace{\int_{0}^{\pi} \sin^{3}\psi\,d\psi}_{=\frac{4}{3}} \underbrace{\int_{0}^{2\pi} \cos^{2}\varphi\,d\varphi}_{=\pi} = a^{4}c \cdot \frac{4\pi}{15},$

and

$$d_{3} = \int_{\mathbb{S}(a,c)} y_{3}^{2} \, \mathrm{d}y = \int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2\pi} (cr\cos\psi) a^{2} cr^{2} \sin\psi \, \mathrm{d}\varphi \, \mathrm{d}\psi \, \mathrm{d}r$$

= $a^{2}c^{3} \underbrace{\int_{0}^{1} r^{4} \, \mathrm{d}r}_{=\frac{1}{5}} \underbrace{\int_{0}^{\pi} \cos^{2}\psi \sin\psi \, \mathrm{d}\psi}_{=\frac{2}{3}} \underbrace{\int_{0}^{2\pi} 1 \, \mathrm{d}\varphi}_{=2\pi} = a^{2}c^{3} \cdot \frac{4\pi}{15}.$

References: See the article of V. Pohánka [4].

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

7 Gravitational field of a hollow sphere

We consider the gravity problem of a body itself, where we present the solution for some special geometry of the body. First we compute the gravitational field $\boldsymbol{\phi}$ of a hollow sphere. Outside $\boldsymbol{\phi}$ it is the same field as for a mass point with the total mass of the hollow sphere, inside in the empty space $\boldsymbol{\phi}$ is a constant. And within the hollow sphere $\boldsymbol{\phi}$ is a solution with boundary data for $\boldsymbol{\phi}$ and $\partial_{\nu}\boldsymbol{\phi}$. These properties, as we will show, all are contained in the single equation

$$\operatorname{div}(-[\nabla \boldsymbol{\phi}]) = [\varrho] ,$$

where ρ is the density of the hollow sphere (*de:* Hohlkugel). We let R_1 the outer radius and R_2 the inner radius of the hollow sphere.

7.1 Gravitational field of a hollow sphere. Let be $n \ge 3$, m > 0, and $t \mapsto \xi(t)$ the motion of the center of the hollow sphere

$$U(\xi(t)) := B_{R_1}(\xi(t)) \setminus B_{R_2}(\xi(t)) , \qquad 0 < R_2 < R_1 ,$$

and let the mass density ρ be defined by

$$\varrho(t,x) = \varrho_{\mathrm{U}} \mathcal{X}_{U(\xi(t))}(x) \quad \text{with} \quad \varrho_{\mathrm{U}} := \frac{m}{\mathrm{L}^n(U(\xi(t)))} \,.$$

Then the solution ϕ of the differential equation

div
$$(-[\nabla \phi]) = [\varrho]$$
 in $\mathscr{D}'(\mathbb{R} \times \mathbb{R}^n)$
with $\phi(t, x) \to 0$ if $|x| \to \infty$,

is of order C^1 in the space of variables (see [Script: Stmt I.2.15]) and reads

$$\boldsymbol{\phi}(t,x) := \begin{cases} \frac{\varrho_{\mathrm{U}}}{2(n-2)} \left((R_1)^2 - (R_2)^2 \right) & \text{if } |x-\xi(t)| \le R_2 ,\\ \frac{\varrho_{\mathrm{U}}}{2} \left(\frac{(R_1)^2}{n-2} - \frac{|x-\xi(t)|^2}{n} - \frac{2}{n(n-2)} \frac{(R_2)^n}{|x-\xi(t)|^{n-2}} \right) \\ & \text{if } R_2 \le |x-\xi(t)| \le R_1 ,\\ \frac{\varrho_{\mathrm{U}}}{n(n-2)} \frac{(R_1)^n - (R_2)^n}{|x-\xi(t)|^{n-2}} & \text{if } R_1 \le |x-\xi(t)| . \end{cases}$$

Note: $L^n(U(\xi(t)))$ and $L^n(U(0))$ have the same volume.

Solution. Without restrictions let $\xi(t) = 0$. Then the gravity potential ϕ does not depend on t, hence for simplicity we neglect the dependence on t, and the density $\rho_{\rm U}$ is given by

$$\varrho_{\rm U} = \frac{m}{{\rm L}^n(U(0))} = \frac{m}{\kappa_n((R_1)^n - (R_2)^n)}$$

We write the weak equation $\operatorname{div}(-[\nabla \phi]) = [\varrho]$ for ϕ in a strong sense: By [Script: Stmt I.2.15] we know that ϕ is a C^1 -function in $\mathbb{R} \times \mathbb{R}^n$ and we let

$$\boldsymbol{\phi}(x) := \begin{cases} \boldsymbol{\phi}_{-}(x) & \text{if } |x| < R_{2}, \\ \boldsymbol{\phi}_{s}(x) & \text{if } R_{2} < |x| < R_{1}, \\ \boldsymbol{\phi}_{+}(x) & \text{if } R_{1} < |x|, \end{cases}$$

author: H.W. Alt & G. Witterstein

title: Exercises

where

$$\begin{aligned} -\Delta \boldsymbol{\phi}_{-}(x) &= 0 & \text{if } |x| < R_2, \\ -\Delta \boldsymbol{\phi}_s(x) &= \varrho_{\mathrm{U}} & \text{if } R_2 < |x| < R_1, \\ -\Delta \boldsymbol{\phi}_+(x) &= 0 & \text{if } R_1 < |x|. \end{aligned}$$

That $\boldsymbol{\phi}$ has to be C^1 at $\partial B_{R_1}(0)$ and $\partial B_{R_2}(0)$ gives us the following boundary conditions (where ν is a normal vector)

$$\left. \begin{array}{l} \left. \boldsymbol{\phi}_{-}(x) = \boldsymbol{\phi}_{s}(x) \\ \left. \partial_{\nu} \boldsymbol{\phi}_{-}(x) = \partial_{\nu} \boldsymbol{\phi}_{s}(x) \right. \\ \left. \boldsymbol{\phi}_{s}(x) = \boldsymbol{\phi}_{+}(x) \\ \left. \partial_{\nu} \boldsymbol{\phi}_{s}(x) = \partial_{\nu} \boldsymbol{\phi}_{+}(x) \right. \end{array} \right\} \text{ for } x \in \partial B_{R_{1}}(0) .$$

$$(7.1)$$

To obtain a solution we make use of the radial symmetric structure of the problem and construct a solution depending only on r = |x| (due to the uniqueness result in [Script: Stmt I.2.14] we have only to provide with one solution). Considering the Δ in radial-symmetric coordinates, we get

$$\Delta \phi(x) = \phi''(r) + \frac{n-1}{r} \phi'(r) = \frac{1}{r^{n-1}} \left(r^{n-1} \phi' \right)'(r)$$

Solving $(r^{n-1}\phi'_{-/+})'/r^{n-1} = 0$ and $(r^{n-1}\phi'_s)'/r^{n-1} = \varrho_{\rm U}$, we obtain

$$\begin{split} \phi_{-}(x) &= C_{1}, \\ \phi_{s}(x) &= -\frac{\varrho_{\mathrm{U}}}{2n} |x|^{2} + \frac{C_{2}}{|x|^{n-2}} + C_{3}, \\ \phi_{+}(x) &= \frac{C_{4}}{|x|^{n-2}} + C_{5}. \end{split}$$

We choose $C_5 = 0$ in order to assure $\phi_+(x) \to 0$ if $|x| \to \infty$. Then the conditions (7.1) on the values of ϕ lead to

$$C_1 = -\frac{\varrho_U}{2n} (R_2)^2 + \frac{C_2}{(R_2)^{n-2}} + C_3,$$

$$-\frac{\varrho_U}{2n} (R_1)^2 + \frac{C_2}{(R_1)^{n-2}} + C_3 = \frac{C_4}{(R_1)^{n-2}}.$$

and the conditions (7.1) on $\partial_{\nu} \phi$ to

$$0 = -\frac{\varrho_{\rm U}}{n} R_2 - (n-2) \frac{C_2}{(R_2)^{n-1}},$$

$$-\frac{\varrho_{\rm U}}{n} R_1 - (n-2) \frac{C_2}{(R_1)^{n-1}} = -(n-2) \frac{C_4}{(R_1)^{n-1}}.$$

From the last two identity we infer

$$C_2 = -\frac{\varrho_{\rm U}}{n(n-2)} (R_2)^n, \quad C_4 = \frac{\varrho_{\rm U}}{n(n-2)} ((R_1)^n - (R_2)^n).$$

From the first two identities we infer

$$C_3 = \frac{1}{2(n-2)} \rho_{\rm U}(R_1)^2, \quad C_1 = \frac{1}{2(n-2)} \rho_{\rm U}((R_1)^2 - (R_2)^2).$$

author: H.W. Alt & G. Witterstein

title: Exercises

Altogether we arrive at

$$\boldsymbol{\phi}(t,x) := \begin{cases} \frac{m}{2\kappa_n(n-2)} \frac{(R_1)^2 - (R_2)^2}{(R_1)^n - (R_2)^n} & \text{if } |x - \xi(t)| \le R_2 ,\\ \frac{m}{2\kappa_n((R_1)^n - (R_2)^n)} \left(\frac{(R_1)^2}{n-2} - \frac{|x - \xi(t)|^2}{n} - \frac{2}{n(n-2)} \frac{(R_2)^n}{|x - \xi(t)|^{n-2}} \right) & \text{if } R_2 \le |x - \xi(t)| \le R_1 ,\\ \frac{m}{n\kappa_n(n-2)} \frac{1}{|x - \xi(t)|^{n-2}} & \text{if } R_1 \le |x - \xi(t)| . \end{cases}$$

This proves the assertion.

We go back to the dependent case $t \mapsto \xi(t)$.

Remark: Due to the linearity of the "div" and the " ∇ " operator, the solution is also achieved if one calculates

$$\boldsymbol{\phi} = \boldsymbol{\phi}_1 - \boldsymbol{\phi}_2 \; ,$$

where $\pmb{\phi}_1$ and $\pmb{\phi}_2$ are the solutions of

$$\begin{aligned} \operatorname{div}(-[\nabla \boldsymbol{\phi}_1]) &= \left[\varrho_{\mathrm{U}} \mathcal{X}_{\mathrm{B}_{R_1}(\xi(t))} \right] \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^n) \text{ with } \boldsymbol{\phi}_1(t, x) \to 0 \text{ if } |x| \to \infty \,, \\ \operatorname{div}(-[\nabla \boldsymbol{\phi}_2]) &= \left[\varrho_{\mathrm{U}} \mathcal{X}_{\mathrm{B}_{R_2}(\xi(t))} \right] \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^n) \text{ with } \boldsymbol{\phi}_2(t, x) \to 0 \text{ if } |x| \to \infty \,. \end{aligned}$$

The convergence of the gravitational potential of a hollow sphere (*de:* Hohlkugel) ϕ^{U} (the solution of 7.1) to the gravitational potential of a spherical shell (*de:* Kugelschale) ϕ^{S} is formulated in the next statement.

7.2 Convergence result. The convergence of the gravitational potential of the hollow sphere ϕ^{U} to the gravitational potential of a spherical shell ϕ^{S} of radius R is

$$\boldsymbol{\phi}^{\mathrm{U}} \longrightarrow \boldsymbol{\phi}^{\mathrm{S}} \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^n; \mathbb{R}^n) \text{ as } \varepsilon \to 0,$$

where $\varepsilon := |R_1 - R_2| \text{ and } R_1, R_2 \to R \text{ as } \varepsilon \to 0.$

Here (see [Script: Stmt I.2.18])

$$\boldsymbol{\phi}^{\rm S}(t,x) := \left\{ \begin{array}{ll} \frac{m}{n\kappa_n(n-2)} \frac{1}{R^{n-2}} & \text{if } |x-\xi(t)| \le R, \\ \frac{m}{n\kappa_n(n-2)} \frac{1}{|x-\xi(t)|^{n-2}} & \text{if } |x-\xi(t)| \ge R. \end{array} \right\}$$

Solution. Use the representation of the solution ϕ U at the end of the above proof.

We are now interested in the corresponding Newton forces of the right-hand side of the momentum equation. We prove the following result, where the Newton

author: H.W. Alt & G. Witterstein

title: Exercises

force of the hollow sphere is given by

$$\mathbf{f}_{\text{Newton}}^{\text{U}}(t,x) = \mathfrak{g}\varrho(t,x)\nabla \boldsymbol{\phi}^{\text{U}}(t,x)$$

$$= \begin{cases} 0 & \text{if } |x-\xi(t)| \leq R_2, \\ -\mathfrak{g}\frac{\varrho_{\text{U}}^2}{n} \Big(|x-\xi(t)|^n - (R_2)^n \Big) \frac{x-\xi(t)}{|x-\xi(t)|^n} & \text{if } R_2 \leq |x-\xi(t)| \leq R_1, \\ 0 & \text{if } R_1 \leq |x-\xi(t)|. \end{cases}$$

Here $\rho_{\rm U}$ is defined as above.

7.3 Convergence of the Newton force. Let the radii depend on ε , that is $R_2 = R_2^{\varepsilon}$ and $R_1 = R_1^{\varepsilon}$, and

$$0 < R_2^{\varepsilon} < R_1^{\varepsilon} \text{ and } \varepsilon := |R_1^{\varepsilon} - R_2^{\varepsilon}| \text{ with } R_2^{\varepsilon} \to R \text{ as } \varepsilon \to 0 \,.$$

Then it holds (we mention that $[f]=f\mathbf{L}^4)$

$$\mathbf{f}^{\mathrm{U}}_{\mathrm{Newton}} \mathrm{L}^4 \to \mathbf{f}^{\mathrm{S}}_{\mathrm{Newton}} \boldsymbol{\mu} \quad \text{in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^n; \mathbb{R}^n) \text{ as } \varepsilon \to 0,$$

where

$$\mathbf{f}_{\text{Newton}}^{\text{S}}(t,x) := -\frac{\mathfrak{g}}{2} \cdot \left(\frac{m}{\mathbf{H}^{n-1}(\partial \mathbf{B}_{R}(\xi(t)))}\right)^{2} \frac{x - \xi(t)}{R}$$

for $x \in \partial B_R(\xi(t))$ and the distribution $\boldsymbol{\mu}$ is given by

$$\langle \eta, \boldsymbol{\mu} \rangle := \int_{\mathbb{R}} \int_{\partial B_{R}(\xi(t))} \eta(t, x) \, \mathrm{d} \mathrm{H}^{n-1}(x) \, \mathrm{d} t.$$

for $\eta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^n; \mathbb{R})$..

The Newtonian gravitational force $\mathbf{f}^{\rm S}_{\rm Newton}$ is a distribution supported on the boundary of a ball, that is on the spherical shell. We could define this Newton force also by

$$\begin{aligned} \mathbf{f}_{\text{Newton}}^{\text{S}}(t,x) &= \\ \mathfrak{g}\varrho_{\text{S}} \cdot \frac{1}{2} \Big(\lim_{\substack{x' \to x \\ |x' - \xi(t)| > R}} \nabla \boldsymbol{\phi}^{\text{S}}(t,x') + \lim_{\substack{x' \to x \\ |x' - \xi(t)| < R}} \nabla \boldsymbol{\phi}^{\text{S}}(t,x') \Big) \\ \text{with } \varrho_{\text{S}} &:= \frac{m}{\mathrm{H}^{n-1}(\partial \mathrm{B}_{R}(0))} = \frac{m}{\mathrm{H}^{n-1}(\partial \mathrm{B}_{R}(\xi(t)))} \,, \end{aligned}$$

that is the mean of the gradient from the outside and from the inside, a formula which one would have suggested.

Solution. Let $\zeta\in C_0^\infty(\mathbb{R}\times\mathbb{R}^n;\mathbb{R}^n)$ be a test function. We compute

$$\begin{split} \left\langle \zeta , \left[\mathbf{f}_{\text{Newton}}^{\text{U}} \right] \right\rangle &= -\mathfrak{g} \frac{\varrho_{\text{U}}^2}{n} \int_{\mathbb{R}} \int_{U(\xi(t))} \zeta(t, x) \bullet \left(x - \xi(t) \right) \frac{|x - \xi(t)|^n - (R_2^{\varepsilon})^n}{|x - \xi(t)|^n} \, \mathrm{d}x \, \mathrm{d}t \\ &= -\mathfrak{g} \frac{\varrho_{\text{U}}^2}{n} \int_{\mathbb{R}} \int_{U(0)} \zeta(t, y + \xi(t)) \bullet y \frac{|y|^n - (R_2^{\varepsilon})^n}{|y|^n} \, \mathrm{d}y \, \mathrm{d}t \\ &= -\mathfrak{g} \frac{\varrho_{\text{U}}^2}{n} \int_{\mathbb{R}} \int_{R_2^{\varepsilon}} \int_{\partial B_1(0)} \zeta(t, rx + \xi(t)) \bullet (rx) \frac{r^n - (R_2^{\varepsilon})^n}{r^n} r^{n-1} \, \mathrm{dH}^{n-1}(x) \, \mathrm{d}r \, \mathrm{d}t \end{split}$$

author: H.W. Alt & G. Witterstein

title: Exercises

$$\begin{split} &= -\mathfrak{g} \frac{m^2}{n\kappa_n^2} \int_{\mathbb{R}} \int_{R_2^{\varepsilon}}^{R_1^{\varepsilon}} \frac{r^n - (R_2^{\varepsilon})^n}{\left((R_1^{\varepsilon})^n - (R_2^{\varepsilon})^n \right)^2} \int_{\partial B_1(0)} \zeta(t, rx + \xi(t)) \bullet x \, \mathrm{dH}^{n-1}(x) \, \mathrm{d}r \, \mathrm{d}t \\ &= -\mathfrak{g} \frac{m^2}{n\kappa_n^2} \int_{\mathbb{R}} \int_0^{\varepsilon} \frac{(s + R_2^{\varepsilon})^n - (R_2^{\varepsilon})^n}{\left((R_1^{\varepsilon})^n - (R_2^{\varepsilon})^n \right)^2} \cdot \\ &\quad \cdot \int_{\partial B_1(0)} \zeta(t, sx + R_2^{\varepsilon}x + \xi(t)) \bullet x \, \mathrm{dH}^{n-1}(x) \, \mathrm{d}s \, \mathrm{d}t \, . \end{split}$$

By Taylor expansion we have

$$\zeta(t, sx + R_2^{\varepsilon}x + \xi(t)) = \zeta(t, R_2^{\varepsilon}x + \xi(t)) + \mathcal{O}(s|x|)$$

and by integration we get from the outside

$$\begin{split} &\int_{0}^{\varepsilon} \frac{(s+R_{2}^{\varepsilon})^{n}-(R_{2}^{\varepsilon})^{n}}{\left(\left(R_{1}^{\varepsilon}\right)^{n}-(R_{2}^{\varepsilon})^{n}\right)^{2}} \,\mathrm{d}s = \left[\frac{\frac{1}{n+1}\left(s+R_{2}^{\varepsilon}\right)^{n+1}-(R_{2}^{\varepsilon})^{n}s}{\left(\left(R_{1}^{\varepsilon}\right)^{n}-(R_{2}^{\varepsilon})^{n}\right)^{2}}\right]_{0}^{\varepsilon} \\ &= \frac{\frac{1}{n+1}\left(\varepsilon+R_{2}^{\varepsilon}\right)^{n+1}-(R_{2}^{\varepsilon})^{n}\varepsilon}{\left(\left(R_{1}^{\varepsilon}\right)^{n}-(R_{2}^{\varepsilon})^{n}\right)^{2}} - \frac{\frac{1}{n+1}\left(R_{2}^{\varepsilon}\right)^{n+1}}{\left(\left(R_{1}^{\varepsilon}\right)^{n}-(R_{2}^{\varepsilon})^{n}\right)^{2}} \\ &= \frac{\left(\varepsilon+R_{2}^{\varepsilon}\right)^{n+1}-(n+1)\left(R_{2}^{\varepsilon}\right)^{n}\varepsilon-(R_{2}^{\varepsilon})^{n+1}}{\left(n+1)\left(\left(\varepsilon+R_{2}^{\varepsilon}\right)^{n}-(R_{2}^{\varepsilon})^{n}\right)^{2}} \longrightarrow \frac{1}{2}\frac{1}{nR^{n-1}} \text{ as } \varepsilon \to 0 \,. \end{split}$$

All in all as $\varepsilon \to 0$ we get

$$\begin{split} \left\langle \zeta \,, \, \left[\mathbf{f}_{\text{Newton}}^{\text{U}} \right] \right\rangle &\longrightarrow -\mathfrak{g} \frac{m^2}{n\kappa_n^2} \int_{\mathbb{R}} \frac{1}{2} \frac{1}{nR^{n-1}} \int_{\partial B_1(0)} \zeta(t, Rx + \xi(t)) \bullet x \, \mathrm{dH}^{n-1}(x) \, \mathrm{d}t \\ &= -\frac{\mathfrak{g}}{2} \Big(\frac{m}{\mathrm{H}^{n-1}(\mathrm{B}_R(\xi(t)))} \Big)^2 \frac{1}{R} \int_{\mathbb{R}} \int_{\partial \mathrm{B}_R(\xi(t))} \zeta(t, x) \bullet (x - \xi(t)) \, \mathrm{d}\mathrm{H}^{n-1}(x) \, \mathrm{d}t \\ &= -\frac{\mathfrak{g}}{2} \Big(\frac{m}{\mathrm{H}^{n-1}(\mathrm{B}_R(\xi(t)))} \Big)^2 \left\langle \zeta \,, \, \frac{\bullet - \xi(t)}{R} \boldsymbol{\mu} \right\rangle \,. \end{split}$$

7.4 Remark. Now we consider two spherical shells $\partial B_{R_1}(\xi(t))$ and $\partial B_{R_1}(\xi(t))$ with the total constant masses $m_1 > 0$ and $m_2 > 0$ respectively. Then the solution ϕ of equation

$$\operatorname{div}(-\nabla[\boldsymbol{\phi}]) = m_1 \boldsymbol{\mu}_1 + m_2 \boldsymbol{\mu}_2 \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^n)$$

with $\phi(t, x) \to 0$ if $|x| \to \infty$ is given by

$$\boldsymbol{\phi}(t,x) = \begin{cases} \frac{1}{\sigma_n(n-2)} \left(\frac{m_1}{(R_1)^{n-2}} + \frac{m_2}{(R_2)^{n-2}} \right) & \text{if } |x - \xi(t)| \le R_2, \\ \frac{1}{\sigma_n(n-2)} \left(\frac{m_1}{(R_1)^{n-2}} + \frac{m_2}{|x - \xi(t)|^{n-2}} \right) & \text{if } R_2 \le |x - \xi(t)| \le R_1, \\ \frac{1}{\sigma_n(n-2)} \frac{m_1 + m_2}{|x - \xi(t)|^{n-2}} & \text{if } R_1 \le |x - \xi(t)|. \end{cases}$$

Here the distributions $\pmb{\mu}_k$ are defined by

$$\langle \eta, \boldsymbol{\mu}_k \rangle := \int_{\mathbb{R}} \int_{\partial B_{R_k}(\xi(t))} \eta(t, x) \, \mathrm{dH}^{n-1}(x) \, \mathrm{d}t \quad \text{ for } \eta \in \mathscr{D}(\mathbb{R}^3) \, .$$

author: H.W. Alt & G. Witterstein

title: Exercises

Solution. This follows by addition.

With the considerations above the Newtonian force on the spherical shells $\partial B_{R_1}(\xi(t))$ and $\partial B_{R_2}(\xi(t))$ is given by

$$\begin{aligned} \mathbf{f}_{\text{Newton}}^{1}(t,x) &\coloneqq \mathfrak{g} \frac{m_{1}}{\mathbf{H}^{n-1}(\partial \mathbf{B}_{R_{1}}(\xi(.)))} \cdot \\ &\cdot \frac{1}{2} \Big(-\frac{m_{1}+m_{2}}{\sigma_{n}} \frac{x-\xi(t)}{(R_{1})^{n}} - \frac{m_{2}}{\sigma_{n}} \frac{x-\xi(t)}{(R_{1})^{n}} \Big) \\ &= -\frac{1}{2} \mathfrak{g} \frac{m_{1}}{\mathbf{H}^{n-1}(\partial \mathbf{B}_{R_{1}}(\xi(.)))^{2}} \frac{m_{1}+2m_{2}}{R_{1}} \left(x-\xi(t)\right) \\ &\quad \text{for points } x \in \partial \mathbf{B}_{R_{1}}(\xi(t)), \\ \mathbf{f}_{\text{Newton}}^{2}(t,x) &\coloneqq -\frac{1}{2} \mathfrak{g} \left(\frac{m_{2}}{\mathbf{H}^{n-1}(\partial \mathbf{B}_{R_{2}}(\xi(.)))}\right)^{2} \frac{1}{R_{2}} \left(x-\xi(t)\right) \\ &\quad \text{for points } x \in \partial \mathbf{B}_{R_{2}}(\xi(t)). \end{aligned}$$

author: H.W. Alt & G. Witterstein

title: Exercises

8 Gravitation of a rotationally symmetric star

Wir berechnen in diesem Abschnitt das Schwerefeld eines Planeten, von dem angenommen wird, dass er rotationssymmetrisch ist. Bei einem Beobachter im Zentrum des Planeten ist also das Schwerefeld ϕ die stationäre Lösung von

$$\operatorname{div}[-\nabla \boldsymbol{\phi}] = [\varrho],$$

$$\boldsymbol{\phi}(x) \to \infty \text{ für } |x| \to \infty.$$
(8.1)

We shall denote by $\bar{\rho}(r)$ the mean density inside r, and by $\bar{\rho}$ the mean density for the whole configuration:

$$\overline{\rho}(r) = \frac{M(r)}{\frac{4}{3}\pi r^3}; \qquad \overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3}, \qquad (2)$$

where M is the mass of the configuration and R defines the radius of the configuration at which ρ and P vanish.

Consider an infinitesimal cylinder at distance r from the center of height dr, and of unit cross-section at right angles to r (see Fig. 4).

Let P be the pressure at r and let the increment in P as we go from r to r + drbe dP. The difference in pressure dPrepresents a force, -dP, acting on the element of mass considered, in the direction of increasing r. This must be counteracted by the gravitational attraction to which the element of mass is subjected. The mass of the infinitesimal cylinder considered is ρdr . The force of attraction between M(r) and ρdr is, ac-

cording to elementary potential theory, the same as between a mass M(r) at the center and ρdr at r. By Newton's law this attractive force is given by $GM(r)\rho dr/r^2$, where G is the constant of gravitation. Further, the attraction due to the material outside r is zero.

Fig. 11: From the book of Chandrasekhar

Hierbei ist also ϕ eine C^1 -Funktion, da ϱ als die Dichte des Planeten gegeben ist durch

$$\varrho(x) = \begin{cases} \widehat{\varrho}(r) \text{ für } r = |x| < R, \\ 0 \text{ sonst,} \end{cases}$$

und $\widehat{\varrho}$ eine beschränkte Funktion ist. Definieren wir fürr < R

$$m(r) := \widehat{\varrho}(r) \operatorname{H}^{2}(\partial \operatorname{B}_{r}(0)) = 4\pi r^{2} \widehat{\varrho}(r)$$

so ist die Teilmasse des Planeten in der Kugel $B_r(0)$

$$M(r) := \int_{\mathcal{B}_r(0)} \varrho(x) \, \mathrm{d} \mathcal{L}^3(x) = \int_0^r m(s) \, \mathrm{d} s \,,$$

author: H.W. Alt & G. Witterstein

title: Exercises
also M'=m. We now let $\pmb{\phi}_r$ be the continuous stationary solution of

$$\begin{split} \operatorname{div}(-\nabla[\boldsymbol{\phi}_r]) &= \widehat{\varrho}(r) \operatorname{H}^2 \bigsqcup \partial \operatorname{B}_r(0) \ ,\\ \boldsymbol{\phi}_r(x) &\to \infty \text{ für } |x| \to \infty \, . \end{split}$$

From 7.2 we see that the solution is given by

$$\boldsymbol{\phi}_r(x) := \left\{ \begin{array}{ll} \displaystyle \frac{m(r)}{4\pi} \frac{1}{r} & \text{ if } |x| \leq r, \\ \displaystyle \frac{m(r)}{4\pi} \frac{1}{|x|} & \text{ if } |x| \geq r. \end{array} \right.$$

We obtain

8.1 Theorem. The function

$$\boldsymbol{\phi}(x) = \int_0^R \boldsymbol{\phi}_r(x) \, \mathrm{d}r$$

is the solution of (8.1).

Solution. We have for $\zeta \in \mathscr{D}(\mathbb{R}^3; \mathbb{R})$ the identity

$$\begin{split} \langle \zeta \,, \, -\Delta[\pmb{\phi}] \,\rangle &= \langle -\Delta\zeta \,, \, [\pmb{\phi}] \,\rangle = -\int_{\mathbb{R}^3} \Delta\zeta(x) \int_0^R \pmb{\phi}_r(x) \,\mathrm{d}r \,\mathrm{d}x \\ &= \int_0^R \left(-\int_{\mathbb{R}^3} \Delta\zeta(x) \pmb{\phi}_r(x) \,\mathrm{d}x \right) \,\mathrm{d}r = \int_0^R \left\langle -\Delta\zeta \,, \, [\pmb{\phi}_r] \,\right\rangle \,\mathrm{d}r \\ &= \int_0^R \left\langle \zeta \,, \, -\Delta[\pmb{\phi}_r] \,\right\rangle \,\mathrm{d}r = \int_0^R \left\langle \zeta \,, \, \widehat{\varrho}(r) \mathrm{H}^2 \bigsqcup \partial \mathrm{B}_r(0) \,\right\rangle \,\mathrm{d}r \\ &= \int_0^R \int_{\partial \mathrm{B}_r(0)} \zeta(x) \widehat{\varrho}(r) \,\mathrm{d}\mathrm{H}^2(x) \,\mathrm{d}r = \int_0^R \int_{\partial \mathrm{B}_r(0)} \zeta(x) \varrho(x) \,\mathrm{d}\mathrm{H}^2(x) \,\mathrm{d}r \\ &= \int_{\mathbb{R}^3} \zeta(x) \varrho(x) \,\mathrm{d}\mathrm{L}^3(x) = \left\langle \zeta \,, \, [\varrho] \,\right\rangle \,, \end{split}$$

which proves (8.1).

We now compute the gravitational field ϕ . From 8.1 we obtain for $|x| \leq R$

$$\begin{split} \pmb{\phi}(x) &= \int_{0}^{R} \pmb{\phi}_{r}(x) \,\mathrm{d}r \\ &= \int_{0}^{|x|} \pmb{\phi}_{r}(x) \,\mathrm{d}r + \int_{|x|}^{R} \pmb{\phi}_{r}(x) \,\mathrm{d}r \\ &= \int_{0}^{|x|} \frac{m(r)}{4\pi |x|} \,\mathrm{d}r + \int_{|x|}^{R} \frac{m(r)}{4\pi r} \,\mathrm{d}r \\ &= \frac{1}{4\pi |x|} \int_{0}^{|x|} m(r) \,\mathrm{d}r + \frac{1}{4\pi} \int_{|x|}^{R} \frac{m(r)}{r} \,\mathrm{d}r \\ &= \frac{M(|x|)}{4\pi |x|} + \frac{1}{4\pi} \int_{|x|}^{R} \frac{M'(r)}{r} \,\mathrm{d}r \,, \end{split}$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

8 Gravitation of a rotationally symmetric star

where $M' \leq 0$, and for $|x| \geq R$

$$\begin{split} \boldsymbol{\phi}(x) &= \int_0^R \frac{m(r)}{4\pi |x|} \,\mathrm{d}r \\ &= \frac{1}{4\pi |x|} \int_0^R m(r) \,\mathrm{d}r = \frac{M(R)}{4\pi |x|} \end{split}$$

Altogether

$$\boldsymbol{\phi}(x) = \frac{M(\min(|x|, R))}{4\pi |x|} + \frac{1}{4\pi} \int_{\min(|x|, R)}^{R} \frac{M'(r)}{r} \,\mathrm{d}r \,.$$
(8.2)

.

Hence for $|x| \leq R$

$$\nabla \boldsymbol{\phi}(x) = -\frac{M(|x|)}{4\pi |x|^3} x + \frac{M'(|x|)}{4\pi |x|} \frac{x}{|x|} - \frac{1}{4\pi} \frac{M'(|x|)}{|x|} \frac{x}{|x|} = -\frac{M(|x|)}{4\pi |x|^3} x$$

and therefore for the Newton force

$$\mathbf{f}_{\text{Newton}}(x) = \mathfrak{g}\varrho(x)\nabla \boldsymbol{\phi}(x) = -\frac{GM(r)\widehat{\varrho}(r)}{r^2}\frac{x}{|x|} \text{ with } r := |x|$$

(see the formula in Fig. 11).

title: Exercises

9 N-body problem

The N-body problem can be derived from the gravity problem in the section about [Script: Sec IV.16 Self-gravitation]. It becomes, when the objects are rotationally symmetric,

$$M_i \ddot{x}_i = G \sum_{j:j \neq i} \frac{M_i M_j (x_j - x_i)}{|x_j - x_i|^3}$$
(9.1)

for i = 1, ..., N. Here M_i is the mass and $t \mapsto x_i(t)$ the position of the *i*-th body. The N-body problem can be solved in general with numerical methods. Here we choose a coordinate system such that the center of mass is at the origin. That is, defining the center of mass x by i.e. with

$$\sum_{i} M_{i}(x_{i} - x) = 0, \text{ or } \quad x := \frac{1}{M} \sum_{i} M_{i}x_{i}, \quad M := \sum_{i} M_{i},$$

the system (9.1) implies that $M\ddot{x} = \sum_i M_i \ddot{x}_i = 0$, which says that x behaves like a free particle in space. Therefore the assumption on the center of mass, x = 0 is consistent with (9.1). We define a vector field

$$F(z) := \frac{z}{|z|^3},$$
 (9.2)

so that (9.1) reads for $i = 1, \ldots, N$

$$\ddot{x}_i = G \sum_{j:j \neq i} M_j F(x_j - x_i) \,. \tag{9.3}$$

3-body problem

We consider now the 3-body problem for three objects denoted by the indices

cen = object in center (example: Earth, or: Sun), per = perturbing object (example: Moon, or: Jupiter), sat = the satellite (example: Satellite, or: Merkur).

An example is a satellite around the earth with the moon as perturbing object, and another example is the mercury moving around the sun with jupiter as perturbing object. These are approximations, since there are many minor effects, so the sun will perturb the orbit of the satellite, and the venus as nearby planet will perturb mercury. Nevertheless for the 3-body system (9.3) becomes

$$\begin{aligned} \ddot{x}_{cen} &= GM_{per}F(x_{per} - x_{cen}) + GM_{sat}F(x_{sat} - x_{cen}), \\ \ddot{x}_{per} &= GM_{cen}F(x_{cen} - x_{per}) + GM_{sat}F(x_{sat} - x_{per}), \\ \ddot{x}_{sat} &= GM_{cen}F(x_{cen} - x_{sat}) + GM_{per}F(x_{per} - x_{sat}). \end{aligned}$$

$$(9.4)$$

If the observer is chosen as above, we have

$$M_{cen}x_{cen} + M_{per}x_{per} + M_{sat}x_{sat} = 0.$$

$$(9.5)$$

author: H.W. Alt & G. Witterstein

title: Exercises

9 N-body problem

We want to write the equations (9.4) with (9.5) for the differences

$$y_{per} := x_{per} - x_{cen} \quad \text{and} \quad y_{sat} := x_{sat} - x_{cen} ,$$

$$M := M_{cen} + M_{per} + M_{sat} , \qquad (9.6)$$

$$\varepsilon_{per} := \frac{M_{per}}{M} \quad \text{and} \quad \varepsilon_{sat} := \frac{M_{sat}}{M} .$$

Then the true positions of the objects are given by

$$\begin{aligned} x_{cen} &:= -\varepsilon_{per} y_{per} - \varepsilon_{sat} y_{sat} ,\\ x_{per} &:= y_{per} + x_{cen} = (1 - \varepsilon_{per}) y_{per} - \varepsilon_{sat} y_{sat} ,\\ x_{sat} &:= y_{sat} + x_{cen} = -\varepsilon_{per} y_{per} + (1 - \varepsilon_{sat}) y_{sat} . \end{aligned}$$

$$(9.7)$$

So y_{per} and y_{sat} are the new two unknown functions, and since

$$\begin{split} \ddot{x}_{per} &= -GM_{cen}F(x_{per} - x_{cen}) - GM_{sat}F(x_{per} - x_{sat}), \\ \ddot{x}_{sat} &= -GM_{cen}F(x_{sat} - x_{cen}) - GM_{per}F(x_{sat} - x_{per}). \end{split}$$

we get the following two ODE's (recall that F(-z) = -F(z) for all z)

$$\begin{split} \ddot{y}_{per} &= -G(M_{cen} + M_{per})F(y_{per}) - GM_{sat}(F(y_{per} - y_{sat}) + F(y_{sat})) \,, \\ \ddot{y}_{sat} &= -G(M_{cen} + M_{sat})F(y_{sat}) - GM_{per}(F(y_{sat} - y_{per}) + F(y_{per})) \,. \end{split}$$

Since $M_{cen} = M - M_{per} - M_{sat}$ this is equivalent to

$$\begin{aligned} &\frac{1}{GM} \, \ddot{y}_{per} = -(1 - \varepsilon_{sat}) F(y_{per}) - \varepsilon_{sat} (F(y_{per} - y_{sat}) + F(y_{sat})) \,, \\ &\frac{1}{GM} \, \ddot{y}_{sat} = -(1 - \varepsilon_{per}) F(y_{sat}) - \varepsilon_{per} (F(y_{sat} - y_{per}) + F(y_{per})) \,, \end{aligned}$$

or, exploiting the definition of F,

$$\frac{1}{GM} \ddot{y}_{per} = -(1 - \varepsilon_{sat}) \frac{y_{per}}{|y_{per}|^3} -\varepsilon_{sat} \left(\frac{y_{per} - y_{sat}}{|y_{per} - y_{sat}|^3} + \frac{y_{sat}}{|y_{sat}|^3} \right),$$

$$\frac{1}{GM} \ddot{y}_{sat} = -(1 - \varepsilon_{per}) F(y_{sat}) -\varepsilon_{per} \left(\frac{y_{sat} - y_{per}}{|y_{sat} - y_{per}|^3} + \frac{y_{per}}{|y_{per}|^3} \right).$$
(9.8)

We write this two ordinary differential equations in a way using quadrupols for the last terms of each equation. We write

$$F(y-z) + F(z) = F(y-z) - F(0-z) = \int_0^1 DF(sy-z) y \, ds$$

(if y - z and -z are opposite to each other, is an extra case for DF), and using the definition of F we have for the derivative

$$DF(z)y = \frac{1}{|z|^3}y - \frac{3y \bullet z}{|z|^5}z = \frac{1}{|z|^3} (y - 3y \bullet \widehat{z} \, \widehat{z}) = \frac{1}{|z|^3} (Id - 3\widehat{z} \otimes \widehat{z})y.$$

author: H.W. Alt & G. Witterstein

title: Exercises

9 N-body problem

Therefore we define the symmetric quadrupole tensor by

$$Q(z,y) := -\int_0^1 \mathrm{D}F(sy-z)\,\mathrm{d}s = \int_0^1 \frac{3(\widehat{z-sy})\otimes(\widehat{z-sy}) - \mathrm{Id}}{|z-sy|^3}\,\mathrm{d}s\,,$$

$$Q(z) := Q(z,0) = \frac{1}{|z|^3} (3\widehat{z}\otimes\widehat{z} - \mathrm{Id})\,,$$
(9.9)

so that

$$F(y-z) + F(z) = -Q(z,y) y.$$
(9.10)

With this one derives the following equivalent equations

$$\frac{1}{GM}\ddot{y}_{per} = \left(-\frac{1-\varepsilon_{sat}}{|y_{per}|^3}\mathrm{Id} + \varepsilon_{sat}Q(y_{sat}, y_{per})\right)y_{per}, \\
\frac{1}{GM}\ddot{y}_{sat} = \left(-\frac{1-\varepsilon_{per}}{|y_{sat}|^3}\mathrm{Id} + \varepsilon_{per}Q(y_{per}, y_{sat})\right)y_{sat}.$$
(9.11)

Satellite with negligible M_{sat}

We now consider the special case that the satellite mass is negligible,

$$\varepsilon_{sat} \to 0, \quad \varepsilon := \varepsilon_{per}, \quad y := y_{sat}, \quad z := y_{per}.$$
 (9.12)

In this limit of vanishing satellite mass the equations for the center position is $x_{cen} := -\varepsilon z$, and for the total mass is now $M = M_{cen} + M_{per}$. With this in mind the system (9.11) becomes

$$\frac{1}{GM} \ddot{z} = -\frac{z}{|z|^3},$$

$$\frac{1}{GM} \ddot{y} = \left(-\frac{1-\varepsilon}{|y|^3} \operatorname{Id} + \varepsilon Q(z,y)\right) y.$$
(9.13)

The following identities are satisfied.

- **9.1 Lemma.** The quadrupople matrix Q satisfies the following.
- (1) Equation (9.10) holds: F(y-z) + F(z) = -Q(z,y)y.
- (2) If $s \in [0,1] \mapsto z sy$ does not touch 0 then

$$Q(z,y) = \int_0^1 \frac{3\widehat{(z-sy)} \otimes \widehat{(z-sy)} - |z-sy|^2 \mathrm{Id}}{|z-sy|^5} \,\mathrm{d}s \,.$$

(3) Alternatively we have

$$\begin{split} Q(z,y) &= \frac{1}{|z|^5} \int_0^1 \frac{3(z-sy) \otimes (z-sy) - |z-sy|^2 \mathrm{Id}}{(1+q(z,sy))^{\frac{5}{2}}} \,\mathrm{d}s\,,\\ \text{with } q(z,\widetilde{y}) &:= \frac{\widetilde{y} \bullet (\widetilde{y} - 2z)}{|z|^2}\,. \end{split}$$

author: H.W. Alt & G. Witterstein

title: Exercises

```
function xdprime = Satellit(t,x,epsi); function xdprime = Satellit(t,x,epsi);
z(1)=x(1); z(2)=x(2); z(3)=x(3);
                                           z(1)=x(1); z(2)=x(2); z(3)=x(3);
z(4)=x(4); z(5)=x(5); z(6)=x(6);
                                           z(4)=x(4); z(5)=x(5); z(6)=x(6);
y(1)=x(7); y(2)=x(8); y(3)=x(9);
                                           y(1)=x(7); y(2)=x(8); y(3)=x(9);
y(4)=x(10); y(5)=x(11); y(6)=x(12);
                                           y(4)=x(10); y(5)=x(11); y(6)=x(12);
znorm=sqrt(z(1)^2+z(2)^2+z(3)^2);
                                           znorm=sqrt(z(1)^2+z(2)^2+z(3)^2);
                                           zd(1)=z(4);
zd(1)=z(4); zd(2)=z(5); zd(3)=z(6);
                                           zd(2)=z(5):
zd(4) = -z(1)/(znorm^3);
                                           zd(3)=z(6);
zd(5) = -z(2)/(znorm^3);
                                           zd(4) = -z(1)/(znorm^3);
zd(6) = -z(3)/(znorm^3);
                                           zd(5) = -z(2)/(znorm^3);
                                           zd(6) = -z(3)/(znorm^3);
ynorm=sqrt(y(1)^2+y(2)^2+y(3)^2);
yz(1)=y(1)-z(1);
                                           ynorm=sqrt(y(1)^2+y(2)^2+y(3)^2);
                                           y_{z=y(1)*z(1)+y(2)*z(2)+y(3)*z(3)};
yz(2)=y(2)-z(2);
yz(3)=y(3)-z(3);
                                           a1=(1-epsi)/(ynorm<sup>3</sup>)+epsi/(znorm<sup>3</sup>);
yznorm=sqrt(yz(1)^2+yz(2)^2+yz(3)^2);
                                           a2=(epsi*3*yz)/(znorm<sup>5</sup>);
a1=(1-epsi)/(ynorm<sup>3</sup>)+epsi/(yznorm<sup>3</sup>);
                                           yd(1)=y(4);
a2=epsi*(1/(yznorm<sup>3</sup>)-1/(znorm<sup>3</sup>));
                                           yd(2)=y(5);
                                           yd(3)=y(6);
yd(1)=y(4); yd(2)=y(5); yd(3)=y(6);
                                           yd(4) = -a1*y(1) +a2*z(1);
                                           yd(5) = -a1*y(2) +a2*z(2);
yd(4) = -a1*y(1) + a2*z(1);
yd(5) = -a1*y(2) + a2*z(2);
                                           yd(6) = -a1*y(3) + a2*z(3);
yd(6) = -a1*y(3) + a2*z(3);
                                           xdprime=[zd(1);zd(2);zd(3);zd(4);
xdprime=[zd(1);zd(2);zd(3);zd(4);
                                             zd(5);zd(6);yd(1);yd(2);
  zd(5);zd(6);yd(1);yd(2);
                                             yd(3);yd(4);yd(5);yd(6)];
  yd(3);yd(4);yd(5);yd(6)];
                                           return
return
```

Fig. 12: Subprogram. Left: Nonlinear version. Right: Quadrupol version.

(4) If $|y| < (\sqrt{2} - 1)|z|$ we can use the formula

$$(1+q)^{-\alpha} = \sum_{k=0}^{\infty} \binom{-\alpha}{k} q^k$$

for all $\alpha > 0$ and $q \in \mathbb{R}$ with |q| < 1.

9.2 Results. In Fig. 15 (und Fig. 14) stellt die äußere Ellipse den Störplaneten z dar, innen ist der Satellit y zu sehen. Es ist alles relativ zum Zentralplaneten dargestellt. Anfangswert für Satellit: y(0) = [0, .5, 0], y'(0) = [-.5, 0, 0]. Anfangswert für Störplaneten: z(0) = [0, 1., 0], z'(0) = [-.9, 0, 0]. Oben: $\varepsilon = 0.01$. Mitte: $\varepsilon = 0.1$. Unten: $\varepsilon = 0.3$. Links: tspan =[0 4]. Rechts: tspan =[0 90]. Es wurden nur die berechneten Werte graphisch dargestellt. Bei gegebenem Störplaneten hat man eine zweidimensionale Mannigfaltigkeit von Lösungen des Satelliten, von der hier nur ein Punkt gezeigt wird. (Try this and other problems with the MatLab programs.)

Wenn man zum Vergleich für den Zentralplaneten die Sonne nimmt und für den Störplaneten den Jupiter sowie für den Satelliten den Merkur, so ist $\varepsilon \approx 0.001$ zu setzen. Im Sonnensystem haben die Planeten Merkur, wie auch Pluto, eine ausgefallene Excentrizität. Hinzu kommt noch der zwischen den inneren 4 Planeten und Jupiter gelegene Asteroidengürtel, dessen Gesamtmasse aber nur 5% des Erdmondes beträgt. Außerdem kann man z.B. den Mittelpunkt bei der

author: H.W. Alt & G. Witterstein

title: Exercises

```
%%main program
function main
%%fraction of mass
epsi = .01; % choose .01 .1 .3
%%initial conditions
z(0) = [0, 1, 0]; z'(0) = [-.9, 0, 0]; % data planet
%y(0) = [0,.5, 0]; y'(0)=[-.5, 0, 0]; % data satellit
x0 = [0, 1, 0, -.9, 0, 0, 0, .5, 0, -.5, 0, 0]; % choose
%%timespan
tspan = [0,4]; % choose
%tspan = [0,90]; % choose
%%set an error
options=odeset('RelTol',1e-6);
%%call the solver
[t,x] = ode45(@Satellit,tspan,x0,options,epsi);
sizex=size(x);
%%plot the results
figure
hold on
plot(0,0,'-o')
axis([-1. 1. -.7 1.]);
plot(x(:,1),x(:,2))
plot(x(:,7),x(:,8))
%%end
return
```

Fig. 13: MATLAB main program.

Erde als Schwerpunkt Erde-Mond betrachten, in guter Näherung wird man also das Planetensystem als N-Körper Problem auffassen können.

References: Zu den Planeten in Doppelsternsystemen (hierzu ist obiges System mit $\varepsilon = .3$ ein gutes Beispiel) siehe [5, Planeten mit zwei Sonnen].

Multiple body problem

We come now back to the multiple body problem, where we now let i = 0, ..., N, that is we have an (N+1)-body problem. The objects are modelled by balls with vanishing radius. The central object, the sun, has index 0, the other objects are the planets. We again choose a coordinate system with we consider as inertial system and we choose the center of mass at the origin. Therefore (9.1) reads

$$\begin{split} M_0 x_0 + \sum_{j:j \ge 1} M_j x_j &= 0 \,, \\ \ddot{x}_i &= -G \sum_{j:j \ge 1, j \ne i} M_j F(x_i - x_j) - G M_0 F(x_i - x_0) \end{split}$$

for $i = 1, \ldots, N$, or with

$$\varepsilon_i := \frac{M_i}{M} \text{ for } i \ge 1, \quad M := \sum_{i=0}^N M_i$$

author: H.W. Alt & G. Witterstein

title: Exercises

Fig. 14: Quadrupol version (see text for explanation).

the equations to be solved are

$$x_0 = -\sum_{j:j\ge 1} \varepsilon_j (x_j - x_0) ,$$

$$\frac{1}{GM} \ddot{x}_i = -\left(1 - \sum_{j:j\ge 1} \varepsilon_j\right) F(x_i - x_0) - \sum_{j:j\ge 1, j\ne i} \varepsilon_j F(x_i - x_j) .$$

If we introduce the distance to the sun

$$y_i := x_i - x_0$$

author: H.W. Alt & G. Witterstein

title: Exercises

Fig. 15: Nonlinear version (see text for explanation).

we can write the differential equations as

$$\frac{1}{GM}\ddot{y}_{i} = -\left(1 - \sum_{\substack{j:j \ge 1, j \neq i}} \varepsilon_{j}\right)F(y_{i}) \\ - \sum_{\substack{j:j \ge 1, j \neq i}} \varepsilon_{j}\left(F(y_{i} - y_{j}) + F(y_{j})\right),$$

$$(9.14)$$

and then the position of the sun and of the planet system is

$$x_0 = -\sum_{j:j \ge 1} \varepsilon_j y_j ,$$

$$x_i = x_0 + y_i \text{ for } i \ge 1 .$$

References: See [Wikipedia: N-body simulation].

author: H.W. Alt & G. Witterstein

title: Exercises

 $10 \; Sgr \; A^*$

10 Sgr A^*

Vergleichen Sie das hiesige Bild um das Zentrum der Milchstraße mit der Abbildung [Script: Fig 12] des "galaktischen Zentrums" im Abschnitt [Script: Sec I.3 "Conservation of momentum"] des Skriptes.

Fig. 16: aus Dietrich Lemke "SOFIA - für immer jung", SuW 2|2015.

Das Bild hier hat eine Ausdehnung von einigen "Lichtjahren", während das Bild im Abschnitt Impulserhaltung eine Ausdehnung von einigen "Lichttagen" hat, das heißt die dort gezeigten Sternbahnen liegen weit innerhalb des Staubrings.

References

- [10-1] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott: MONITORING STELLAR ORBITS AROUND THE MAS-SIVE BLACK HOLE IN THE GALACTIC CENTER. The Astrophysical Journal 692:1075–1109. 2009 doi:10.1088/0004-637X/692/2/1075
- [10-2] S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, R. Genzel: *THE ORBIT OF THE STAR S2 AROUND SGR* A* FROM VERY LARGE TELESCOPE AND KECK DATA. The Astrophysical Journal 707:114–117. 2009 doi:10.1088/0004-637X/707/2/L114

title: Exercises

Beschreiben Sie allgemeine Explosionen mit Hilfe der Masse-Impulserhaltung. Dabei sei vorausgesetzt:

- In der Explosionswolke ist die Verteilung räumlich homogen.
- Dazu gehört eine räumlich konstante Dichte.
- Der Stresstensor ist vernachlässigbar.

Fig. 17: "Bei einer Explosion (links) wirken die Kräfte vom Zentrum fort, bei einer Implosion (rechts) jedoch sind die Kräfte auf das Zentrum selbst gerichtet. Das Objekt links bricht explosionsartig auseinander." Von [Wikipedia: Explosion]

Die Masse-Impulserhaltung ist (im Distributionssinn)

$$\begin{aligned} \partial_t \varrho + \operatorname{div}(\varrho v) &= 0, \\ \varrho(\partial_t v + v \bullet \nabla v) + \operatorname{div}(p \operatorname{Id}) &= \mathbf{f}, \end{aligned} \tag{11.1}$$

wobei wir für den Drucktensor $\Pi = p$ Id gesetzt haben und der **f**-Term keine äußeren Kräfte beinhaltet, neben Scheinkräften (*en:* fictitious forces) hat er aber einen internen Schwerkraftterm

$$\mathbf{f} = \mathfrak{g} \rho \nabla \boldsymbol{\phi} + \mathbf{f}_{cor} \,, \quad -\Delta \boldsymbol{\phi} = \rho \,. \tag{11.2}$$

Hierbei ist ${\mathfrak g}$ die Gravitätskonstante, die im dreidimensionalen Raum

$$\frac{\mathfrak{g}}{4\pi} = G = 6.67384 \cdot 10^{-11} \frac{m^3}{kg \, s^2}$$

erfüllt. Wir machen den folgenden Ansatz:

$$t \mapsto x_0(t) \text{ ist Zentrum der Explosion,}$$

$$\varrho(t, x) = \tilde{\varrho}(t, x - x_0(t)),$$

$$v(t, x) = \dot{x}_0(t) + \tilde{v}(t, x - x_0(t)),$$

$$p(t, x) = p(t) \text{ gleich dem Außendruck,}$$

(11.3)

author: H.W. Alt & G. Witterstein

title: Exercises

wobei

$$\widetilde{v}(t,\widetilde{x}) = w(t)\widetilde{x} \text{ in } B_{R(t)}(0) \text{ und } \widetilde{v}(t,\widetilde{x}) = 0 \text{ außerhalb},
\widetilde{\varrho}(t,\widetilde{x}) = \varrho(t) \text{ in } B_{R(t)}(0) \text{ und } \widetilde{\varrho}(t,\widetilde{x}) = 0 \text{ außerhalb},$$
(11.4)

welches die wesentlichen Voraussetzungen an die Explosionswolke sind. Unter diesen Annahmen gilt:

11.1 Theorem. Die Massenerhaltung ist erfüllt genau dann, wenn

$$M := \int_{\mathbb{R}^3} \varrho(t, x) \, \mathrm{d}x = \varrho(t) \mathrm{L}^3(\mathrm{B}_{R(t)}(0))$$

konstant in der Zeit ist und wenn gilt

$$\dot{R} = wR$$
.

Solution. Die Massenerhaltung lautet für reellwertige Testfunktionen η

$$0 = \langle \eta, -\partial_t \varrho - \operatorname{div}(\varrho v) \rangle = \int_{\mathbb{R}^4} \left(\partial_t \eta \cdot \varrho + \nabla \eta \bullet(\varrho v) \right) dL^4$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}^3} \left(\partial_t \eta \cdot \varrho + \nabla \eta \bullet(\varrho v) \right) dx \, dt \,.$$

Da ϱ und vim Ort beschränkten Träger haben, können wir Testfunktionen $\eta=\eta(t)$ einsetzen und erhalten

$$0 = \int_{\mathbb{R}} \int_{\mathbb{R}^3} \partial_t \eta \cdot \varrho \, \mathrm{d}x \, \mathrm{d}t = \int_{\mathbb{R}} \partial_t \eta(t) \int_{\mathbb{R}^3} \varrho(t, x) \, \mathrm{d}x \, \mathrm{d}t = -\int_{\mathbb{R}} \eta(t) \partial_t M(t) \, \mathrm{d}t \, .$$
$$\underbrace{= M(t)}$$

Da η beliebig war, folgt $\partial_t M = 0$. In $\{(t, x) \in \mathbb{R}^4; t \in \mathbb{R}, |x - x_0(t)| < R(t)\}$ besagt die Massenerhaltung

$$0 = \partial_t \varrho + \operatorname{div}(\varrho v)$$

= $\dot{\varrho} + \varrho \operatorname{div} v$ (da ϱ nur von der Zeit abhängt)
= $\dot{\varrho} + 3w\varrho$ (da div $v = \operatorname{div} \widetilde{v} = 3w$).

 $\mathbf{D}\mathbf{a}$

$$M = \rho \mathcal{L}^{3}(\mathcal{B}_{R}(0)) = \frac{4\pi}{3}\rho R^{3}$$
 also $R^{3} = c\rho^{-1}$, $c := \frac{3M}{4\pi}$

folgt

$$3R^{2}\dot{R} = \frac{d}{dt}R^{3} = c\frac{d}{dt}\varrho^{-1} = -\frac{c}{\varrho^{2}}\dot{\varrho} = \frac{3cw}{\varrho} = 3wR^{3},$$

also $\dot{R} = wR$. (Hierfür gibt es auch eine allgemeinere Herleitung.) Die Situation in der Explosionswolke ist räumlich absolut homogen.

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

Fig. 18: Controlled explosion on earth. From US Air Force Public Affairs.

11.2 Homogenität. Es seien $t \mapsto x_m(t)$ beliebige Punkte in der Explosionswolke, der sich mit der gegebenen Geschwindigkeit v fortbewegen, d.h.

$$\dot{x}_m(t) = v(t, x_m(t)) \,.$$

(1) Für zwei sich mitbewegende Punkte gilt, wenn w durch (11.4) gegeben ist,

$$(x_1 - x_2)^{\cdot} = w(x_1 - x_2)$$

d.h. die Differen
z x_1-x_2 liegt immer auf derselben Geraden.

(2) Ist $b(t) := x_2(t)$ die Position eines weiteren Beobachters, also

$$\begin{bmatrix} t \\ x \end{bmatrix} = Y\left(\begin{bmatrix} t^* \\ x^* \end{bmatrix} \right) = \begin{bmatrix} t^* \\ x^* + b(t^*) \end{bmatrix}$$

die Beobachtertransformation, so gilt

$$\dot{x}_1^* = w x_1^* \,.$$

Solution (1).

$$\frac{\mathrm{d}}{\mathrm{d}t}(x_1(t) - x_2(t)) = v(t, x_1(t)) - v(t, x_2(t)) = w(t)(x_1(t) - x_2(t))$$

nach (11.3) and (11.4).

Solution (2). Es ist $x_m^*(t) = x_m(t) - b(t) = x_m(t) - x_2(t)$.

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

11.3 Theorem.

(1) Die Massenerhaltung impliziert, dass

$$\begin{split} \dot{\varrho} + 3w\varrho &= 0 \,, \\ \dot{R} - wR &= 0 \,. \end{split}$$

Insbesondere ist M = const.

(2) Die Gravitationsgleichung impliziert, dass

$$\boldsymbol{\phi}(t,x) = \begin{cases} \frac{3M}{8\pi R} \left(1 - \frac{|x - x_0(t)|^2}{3R^2} \right) & \text{für } |x - x_0(t)| \le R, \\ \frac{M}{4\pi} \frac{1}{|x - x_0(t)|} & \text{für } |x - x_0(t)| \ge R. \end{cases}$$

(3) Die Impulserhaltung gilt mit $\mathbf{f}_{cor} = \varrho \ddot{x}_0$ und reduziert sich zu

$$\dot{w} + w^2 + GM \frac{1}{R^3} = 0.$$

Solution (1). Siehe 11.1.

Solution (2). Da $\rho = \rho(t)\mathcal{X}_{B_{R}(x_{0})}$, wobei R und x_{0} von t abhängen, ist die Lösung von $-\Delta \phi = \rho$ in \mathbb{R}^{4} mit $\phi(t, x) \to 0$ für $|x| \to \infty$ gegeben durch die angegebene Formel.

Solution (3). Sei $|x - x_0| \leq R$. Da p = p(t) nicht von x abhängt, ist die Impulserhaltung

$$\partial_t v + v \bullet \nabla v = \frac{1}{\varrho} \mathbf{f}_{cor} + \mathfrak{g} \nabla \boldsymbol{\phi} \,.$$

Nun ist wegen $v = \dot{x_0} + w \cdot (x - x_0)$ und $v \bullet \nabla v = (Dv)v$

$$\partial_t v + v \bullet \nabla_x v = \partial_t (\dot{x}_0 + w(x - x_0)) + w \left(\mathcal{D}_x (x - x_0) \right) (\dot{x}_0 + w(x - x_0))$$

= $\dot{x}_0 + \dot{w} (x - x_0) - w \dot{x}_0 + w \dot{x}_0 + w^2 (x - x_0) = (\dot{w} + w^2) (x - x_0) + \ddot{x}_0 ,$

also $\mathbf{f}_{cor} = \varrho \ddot{x}_0$ und

$$(\dot{w}+w^2)\cdot(x-x_0)=\mathfrak{g}\nabla\phi.$$

Nach (2) ist

$$\mathfrak{g}\nabla \phi = -\frac{\mathfrak{g}M}{4\pi}\frac{x-x_0}{R^3} = -GM\frac{x-x_0}{R^3},$$

also

$$(\dot{w} + w^2 + GM\frac{1}{R^3}) \cdot (x - x_0) = 0$$

Es sind also die Größen ρ und w zu bestimmen, oder R und V = wR.

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

11.4 Lemma. Mit V := wR sind R und V zu bestimmen. Es gelten die Differentialgleichungen

$$\dot{R} = V \text{ und } \dot{V} + \frac{GM}{R^2} = 0,$$

das heißt

$$\ddot{R} + \frac{GM}{R^2} = 0 \,. \label{eq:R}$$

Also ist der Radius eine konkave Funktion in der Zeit.

Solution. Es ist $\dot{R} = wR = V$ nach 11.3(1). Dann folgt mit 11.3(3)

$$\dot{V} = \dot{w}R + w\dot{R} = -(w^2 + \frac{GM}{R^3})R + w^2R = -\frac{GM}{R^2}.$$

Wenn der Gravitätsterm vernachlässigbar ist, z.B. in der Situation auf dieser Erde in Fig. 18, dann gilt Folgendes.

11.5 Ohne Schwerkraft. Ist der Schwerkraftterm vernachlässigbar, so gilt nach 11.4 die Differentialgleichung $\ddot{R} = 0$, also mit einer Konstanten C > 0

$$R(t) = C(t - t_*) \text{ für } t \ge t_* ,$$
$$V = C ,$$

beziehungsweise

$$\varrho(t) = \frac{3M}{4\pi C^3} \frac{1}{(t-t_*)^3} \,.$$

Solution. Die Formael für ρ gilt, da nach 11.3

$$\varrho(t) = \frac{M}{\mathrm{L}^3(\mathrm{B}_R(0))} = \frac{3M}{4\pi R^3} = \frac{3M}{4\pi C^3} \frac{1}{(t-t_*)^3} \,.$$

Mit Gravitation hat man auf jeden Fall folgende spezielle Lösung.

11.6 Mit Schwerkraft. Unter Berücksichtigung der Selbstgravitation ist eine Lösung gegeben durch

$$R(t) = C(t - t_*)^{\frac{2}{3}}$$
 für $t \ge t_*$ mit $C^3 = \frac{9GM}{2}$.

beziehungsweise

$$\varrho(t) = \frac{3M}{4\pi C^3} \frac{1}{(t-t_*)^2} \, .$$

Solution. Wir haben

$$\ddot{R} + \frac{GM}{R^2} = 0$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

zu zeigen. Es ist

$$\frac{GM}{R^2} = \frac{2C^3}{9R^2} = \frac{2C}{9(t-t_*)^{\frac{4}{3}}} = -C\frac{\mathrm{d}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}t}(t-t_*)^{\frac{2}{3}} = -\ddot{R}.$$

Eine einparametrische Schar von Lösungen für die Differentialgleichung mit Schwerkraft wird nun angegeben.

11.7 Schar von Lösungen. Es sei R_0 die Lösung aus 11.6. Dann ist

 $R = R_0 + R_1$

eine Lösung solange R > 0, d.h. $R_1 > -R_0$, und

$$\ddot{R}_1 - \frac{2\left(2 + \frac{R_1}{R_0}\right)}{9(1 + \frac{R_1}{R_0})^2} \frac{R_1}{(t - t_*)^2} = 0.$$

Beachte, dass \mathbb{R}_1 kein Vorzeichen haben muss.

011

Solution. Es gilt nach 11.6

$$\ddot{R}_0 + \frac{GM}{R_0^2} = 0$$
,

-1

also folgt

$$0 = \ddot{R} + \frac{GM}{R^2} = \ddot{R}_1 + GM \left(\frac{1}{(R_0 + R_1)^2} - \frac{1}{R_0^2}\right)$$
$$= \ddot{R}_1 + \frac{GM}{R_0^2} \left(\frac{1}{(1 + \frac{R_1}{R_0})^2} - 1\right)$$
$$= \ddot{R}_1 + \frac{GM}{(1 + \frac{R_1}{R_0})^2} \frac{1 - (1 + \frac{R_1}{R_0})^2}{R_0^2}.$$

Da

$$\frac{1 - (1 + \frac{R_1}{R_0})^2}{R_0^2} = \frac{1}{R_0^2} \left(-2\frac{R_1}{R_0} - \frac{R_1^2}{R_0^2} \right) = -\frac{R_1}{R_0^3} \left(2 + \frac{R_1}{R_0} \right),$$

ergibt sich

$$\begin{split} \frac{GM}{(1+\frac{R_1}{R_0})^2} \frac{1-(1+\frac{R_1}{R_0})^2}{R_0^2} &= -\frac{GM\left(2+\frac{R_1}{R_0}\right)}{(1+\frac{R_1}{R_0})^2} \frac{R_1}{R_0^3} \\ &= -\frac{2\left(2+\frac{R_1}{R_0}\right)}{9(1+\frac{R_1}{R_0})^2} \frac{C^3R_1}{R_0^3} = -\frac{2\left(2+\frac{R_1}{R_0}\right)}{9(1+\frac{R_1}{R_0})^2} \frac{R_1}{(t-t_*)^2} \,. \end{split}$$

Wir erhalten also die Differentialgleichung

$$\ddot{R}_1 - \frac{2\left(2 + \frac{R_1}{R_0}\right)}{9(1 + \frac{R_1}{R_0})^2} \frac{R_1}{(t - t_*)^2} = 0.$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

Es ist hier nicht gesagt, dass die Explosion durch in der Umgebung vorhandenes Material gebremst wird. Es wird nur eine freie Detonation beschrieben. Hat die Selbstgravitation einen großen Effekt auf die Detonation, so kann man die Phänomene mit dem "Urknall" (*en:* Big Bang) vergleichen, wobei wir natürlich zunächst die Lichtgeschwindigkeit gegen Unendlich konvergieren lassen.

11.8 Lösungen nahe t_* . Es gilt mit einem $B \in \mathbb{R}$

$$R(t) \approx C(t-t_*)^{\frac{2}{3}} + B(t-t_*)^{\frac{4}{3}}$$
 für kleines $t-t_*$.

Bemerkung: Genau gesagt, gilt für $t \searrow t_*$

$$\frac{R(t)}{(t-t_*)^{\frac{2}{3}}} = C + B(t-t_*)^{\frac{2}{3}} + \mathcal{O}((t-t_*)^{\frac{2}{3}}).$$

author: H.W. Alt & G. Witterstein

title: Exercises

Solution. Die Linearizierung der Gleichung in 11.7 ist

$$\ddot{R}_1 - \frac{4}{9} \frac{R_1}{(t - t_*)^2} = 0$$

und die allgemeine Lösung dieser Differentialgleichung lautet

$$R_1(t) = B(t - t_*)^{\frac{4}{3}}, \quad B \in \mathbb{R},$$

4

also ergibt sich für die gesamte Lösung

$$R(t) \approx C(t - t_*)^{\frac{2}{3}} + B(t - t_*)^{\frac{4}{3}}$$
 für kleines $t - t_*$.

Fig. 20: From www.einstein-online.info

Es stellt sich nun heraus, dass die Lösungen für große positive B für $t \nearrow \infty$ gegen ∞ streben, während sie für großes negatives B gegen 0 konvergieren für $t \nearrow t_+$ mit einem gewissen $t_+ < \infty$. Mit Selbstgravitation gibt es also freie Detonationen die sich immer weiter ausbreiten, und solche die wieder in sich zusammenfallen.

11.9 Theorem. Sei $t_* < t_+$ und M > 0 beliebig. Dann gibt es (genau) eine Lösung von

$$\ddot{R} + \frac{GM}{R^2} = 0 \text{ und } R > 0 \text{ in }]t_*, t_+[, R(t_*) = 0 \text{ und } R(t_+) = 0.$$

Solution. Es soll R Lösung sein von

$$\int_{t_*}^{t_+} \left(\dot{\zeta} \dot{R} + \zeta f(R) \right) \mathrm{dL}^1 = 0 \text{ für } \zeta \in C_0^\infty(]t_*, t_+[) ,$$

wobei

$$f(z):=-\frac{GM}{z^2} \text{ für } z>0 \, .$$

Definieren wir nun die monoton wachsende stetige Funktion durch

$$f_{\varepsilon}(z) := \begin{cases} -\frac{GM}{z^2} \text{ für } z \ge \varepsilon, \\ -\frac{GM}{\varepsilon^2} \text{ für } z \le \varepsilon, \end{cases}$$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

```
%%main program
function main
\ensuremath{\ensuremath{\mathcal{K}}\xspace}\xspace and the second transformation of transformation
x0(1)=0.01; x0(2)=14; tspan = [0,3.5]; % choose
%x0(1)=0.01; x0(2)=14.1; tspan = [0,50]; % choose
%x0(1)=0.01; x0(2)=14.14; tspan = [0,350]; % choose
%x0(1)=0.01; x0(2)=14.145; tspan = [0,350000]; % choose
%%set an error
options=odeset('RelTol',1e-3);
% call the solver
[t,x] = ode45(@knall,tspan,x0,options);
%%plot the results
figure
hold on
plot(t,x(:,1))
return
%%subroutine
function xprime = knall(t,x)
xprime=[x(2);-1./(x(1)^2)];
return
```

Fig. 21: MATLAB program.

so gibt es genau ein $u_{\varepsilon}\in W^{1,2}(]t_*,t_+[)$ (es handelt sich um einen monotonen Operator) mit

$$\begin{split} u_{\varepsilon}(t) &= \varepsilon \text{ für } t = t_*, \ t = t_+, \\ \int_{t_*}^{t_+} \left(\dot{\zeta} \dot{u}_{\varepsilon} + \zeta f_{\varepsilon}(u_{\varepsilon}) \right) \mathrm{dL}^1 = 0 \text{ für } \zeta \in C_0^{\infty}(]t_*, t_+[]) \,. \end{split}$$

(Die folgenden Argumentationen können mit etwas Aufwand gezeigt werden.) Da $f_{\varepsilon} \leq 0$ ist, folgt nach dem Maximumprinzip, dass $u_{\varepsilon} \geq \varepsilon$ ist, also gilt

$$\ddot{u}_{\varepsilon} = f_{\varepsilon}(u_{\varepsilon}) = f(u_{\varepsilon}).$$

Setzen wir für ζ die Funktion $\zeta = (u_{\varepsilon} - \varepsilon)^2$ ein, so erhalten wir

$$\int_{t_*}^{t_+} \partial_t ((u_{\varepsilon} - \varepsilon)^2) \partial_t u_{\varepsilon} \, \mathrm{dL}^1 = \int_{t_*}^{t_+} (u_{\varepsilon} - \varepsilon)^2 (-f(u_{\varepsilon})) \, \mathrm{dL}^1$$
$$= \int_{t_*}^{t_+} \frac{(u_{\varepsilon} - \varepsilon)^2}{u_{\varepsilon}^2} GM \, \mathrm{dL}^1 \le GM(t_+ - t_*) \, .$$

Da

$$\partial_t ((u_\varepsilon - \varepsilon)^2) \partial_t u_\varepsilon = 2(u_\varepsilon - \varepsilon)(\partial_t u_\varepsilon)^2 = 2((u_\varepsilon - \varepsilon)^{\frac{1}{2}} \partial_t u_\varepsilon)^2 = \frac{8}{9} (\partial_t ((u_\varepsilon - \varepsilon)^{\frac{3}{2}}))^2,$$

folgt

$$\int_{t_*}^{t_+} \left| \partial_t \left((u_\varepsilon - \varepsilon)^{\frac{3}{2}} \right) \right|^2 \mathrm{dL}^1 \le \frac{9}{8} GM(t_+ - t_*) \,.$$

Daraus folgt, dass $\partial_t \left((u_{\varepsilon} - \varepsilon)^{\frac{3}{2}} \right)$ in $L^2(]t_*, t_+[)$ beschränkt ist und $u_{\varepsilon} - \varepsilon$ gleichgradig stetig ist, also für eine Teilfolge $\varepsilon \to 0$

 $u_{\varepsilon} \to u$ schwach in $W^{1,2}(]t_*, t_+[), u_{\varepsilon} \to u$ gleichmäßig.

author: H.W. Alt & G. Witterstein

title: Exercises

Es folgt (da auch u > 0 in $]t_*, t_+[)$

$$\begin{split} & u(t) = 0 \text{ für } t = t_*, \, t = t_+, \\ & \int_{t_*}^{t_+} \left(\dot{\zeta} \dot{u} + \zeta f(u) \right) \mathrm{dL}^1 = 0 \text{ für } \zeta \in C_0^\infty(]t_*, t_+[]) \,, \end{split}$$

was die Behauptung ist.

Wir haben also gesehen, dass es, bei gegebenem t_* , eine einparametrische Schar von Lösungen gibt, die die beiden Fälle, Explosion für alle Zeit (z.B. 11.6), oder Zurückbildung in endlicher Zeit (z.B. 11.9), beschreibt. Es gibt (wahrscheinlich) genau einen Parameter der zwischen den beiden Möglichkeiten trennt. Es gibt also einen Wert $B_{crit} \in \mathbb{R}$, so dass

- für $B > B_{crit}$ existiert die Lösung für alle t und konvergiert für $t \to \infty$ gegen unendlich.
- für $B < B_{crit}$ existiert die Lösung für $t < t_+(B)$ mit einem $t_+(B) > t_*$ und konvergiert für $t \to t_+(B)$ gegen 0.

Ein Programm zur (experimentellen) Berechnung von B_{crit} findet sich in Fig. 21.

References

[11-1] Die Geburt des Universums. Serie Spektrum der Wissenschaft. Feb. 2015 Teil 1: Niayesh Afshordi, Robert B. Mann, Razieh Pourhasan. Das Schwarze Loch am Beginn der Zeit. Mar. 2015 Teil 2: Lawrence M. Krauss. Wellenschlag des Urknalls. Apr. 2015 Teil 3: Michael D. Lemonick. Die ersten Sterne. Elena Sellentin. Mission DARE. Spektrum der Wissenschaft, Feb.-Apr. 2015

title: Exercises

Wenn ρ die Massendichte ist, ist das durch diese Masse hervorgerufene Gravitationspotential ϕ gegeben durch die Wellengleichung

$$\frac{1}{c^2}\partial_t^2\boldsymbol{\phi} - \Delta\boldsymbol{\phi} = \varrho\,.$$

Um diese Gleichung zu behandeln, betrachten wir die Fundamentallösung. Diese Fundamentallösung in $\mathbb{R} \times \mathbb{R}^3$ ist ein Maß.

12.1 Fundamental solution of the 3D wave equation. Consider the measure

$$F = \frac{c}{4\pi |x|} (\mathbf{L}^1 \otimes \mathbf{H}^2) \bigsqcup \partial K_c ,$$

where $K_c := \{(t, x); t > 0 \text{ and } |x| < ct\}$

is the light cone. This means that for test functions $\zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$

$$\langle \zeta, F \rangle = \int_{\mathbb{R}_+} \int_{\partial \mathcal{B}_{ct}(0)} \zeta(t, x) \frac{c}{4\pi |x|} \, \mathrm{dH}^2(x) \, \mathrm{d}t = \int_{\mathbb{R}^3} \zeta\Big(\frac{|x|}{c}, x\Big) \frac{\mathrm{d}\mathcal{L}^3(x)}{4\pi |x|}$$

In the limit $c \to \infty$ one obtains the classical Poisson equation which has a well known fundamental solution, see [Script: Stmt I.2.12]. We will prove now that the distribution F has the representation as integral over \mathbb{R}^3 in the above definition and that it is the fundamental solution of the wave equation.

12.2 Lemma. We prove

$$\frac{1}{c^2}\partial_t^2 F - \Delta F = \boldsymbol{\delta}_{(0,0)} \quad \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^3; \mathbb{R}).$$

Solution. Let $\zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$ be a test function. Then

$$\begin{split} \langle \zeta \,,\, F \,\rangle &= \int_{\mathbb{R}_+} \int_{\partial \mathcal{B}_{ct}(0)} \zeta(t,x) \frac{c}{4\pi |x|} \,\mathrm{d}\mathcal{H}^2(x) \,\mathrm{d}t \\ &= \int_{\mathbb{R}_+} \int_{\partial \mathcal{B}_1(0)} \zeta(t,ct\xi) \frac{c}{4\pi ct} (ct)^2 \,\mathrm{d}\mathcal{H}^2(\xi) \,\mathrm{d}t \quad (x \leadsto \xi = x/ct) \\ &= \int_0^\infty \int_{\partial \mathcal{B}_1(0)} \zeta\left(\frac{r}{c},r\xi\right) \frac{cr}{4\pi} \frac{1}{c} \,\mathrm{d}\mathcal{H}^2(\xi) \,\mathrm{d}r \quad (t \leadsto r = ct) \\ &= \int_0^\infty \int_{\partial \mathcal{B}_r(0)} \zeta\left(\frac{|x|}{c},x\right) \frac{|x|}{4\pi} \frac{1}{|x|^2} \,\mathrm{d}\mathcal{H}^2(x) \,\mathrm{d}r \quad (\xi \leadsto x = r\xi) \\ &= \int_{\mathbb{R}^3} \zeta\left(\frac{|x|}{c},x\right) \frac{1}{4\pi |x|} \,\mathrm{d}\mathcal{L}^3(x) \,. \end{split}$$

Therefore one has the following identity

$$\left\langle \zeta, \frac{1}{c^2} \partial_t^2 F - \Delta F \right\rangle = \left\langle \frac{1}{c^2} \partial_t^2 \zeta - \Delta \zeta, F \right\rangle$$

=
$$\int_{\mathbb{R}^3} \frac{1}{4\pi |x|} \left(\frac{1}{c^2} (\partial_0^2 \zeta) - \Delta \zeta \right) \left(\frac{|x|}{c}, x \right) dL^3(x) .$$
 (12.1)

author: H.W. Alt & G. Witterstein

title: Exercises

Thus we have to compute the wave operator of the test function. For the derivatives of $x\mapsto \zeta(\frac{|x|}{c},x)$ we write for $x\neq 0$ and $i\geq 1$

$$\partial_{x_i} \left[\zeta \left(\frac{|x|}{c}, x \right) \right] = (\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x_i}{|x|} + (\partial_i \zeta) \left(\frac{|x|}{c}, x \right)$$

and

$$\begin{aligned} \partial_{x_i}^2 \left[\zeta \left(\frac{|x|}{c}, x \right) \right] &= \partial_{x_i} \left[(\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x_i}{|x|} \right] + (\partial_0 \partial_i \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x_i}{|x|} \\ &+ (\partial_i^2 \zeta) \left(\frac{|x|}{c}, x \right), \\ \partial_{x_i} \left[(\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \right] &= (\partial_0^2 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x_i}{|x|} + (\underbrace{\partial_i \partial_0 \zeta}_{=\partial_0 \partial_i \zeta}) \left(\frac{|x|}{c}, x \right). \end{aligned}$$

Plugging $\partial_0 \partial_i \zeta$ in the first equation we derive

$$\begin{aligned} \partial_{x_i}^2 \Big[\zeta \Big(\frac{|x|}{c}, x \Big) \Big] &= \partial_{x_i} \Big[(\partial_0 \zeta) \Big(\frac{|x|}{c}, x \Big) \frac{1}{c} \frac{x_i}{|x|} \Big] + \partial_{x_i} \Big[(\partial_0 \zeta) \Big(\frac{|x|}{c}, x \Big) \Big] \frac{1}{c} \frac{x_i}{|x|} \\ &- (\partial_0^2 \zeta) \Big(\frac{|x|}{c}, x \Big) \frac{1}{c^2} \frac{(x_i)^2}{|x|^2} + (\partial_i^2 \zeta) \Big(\frac{|x|}{c}, x \Big). \end{aligned}$$

By summation over i we get

$$\Delta_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] = \operatorname{div}_x \left[(\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right] + \nabla_x \left[(\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \right] \bullet \frac{1}{c} \frac{x}{|x|} - (\partial_0^2 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c^2} + (\Delta \zeta) \left(\frac{|x|}{c}, x \right)$$

or for the wave operator

$$\left(\frac{1}{c^2}(\partial_0^2\zeta) - \Delta\zeta\right) \left(\frac{|x|}{c}, x\right)$$

= $-\Delta_x \left[\zeta \left(\frac{|x|}{c}, x\right)\right] + \operatorname{div}_x \left[(\partial_0\zeta) \left(\frac{|x|}{c}, x\right) \frac{1}{c} \frac{x}{|x|}\right] + \nabla_x \left[(\partial_0\zeta) \left(\frac{|x|}{c}, x\right)\right] \bullet \frac{1}{c} \frac{x}{|x|}$

Inserting this into (12.1) we get

$$\left\langle \zeta, \frac{1}{c^2} \partial_t^2 F - \Delta F \right\rangle = -\int_{\mathbb{R}^3} \frac{1}{4\pi |x|} \Delta_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] dL^3(x) + \int_{\mathbb{R}^3} \frac{1}{4\pi |x|} \left(\operatorname{div}_x \left[(\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right] + \nabla_x \left[(\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \right] \bullet \frac{1}{c} \frac{x}{|x|} \right) dL^3(x).$$
(12.2)

For the second integral on the right-hand side of (12.2) we compute for $x \neq 0$

author: H.W. Alt & G. Witterstein

title: Exercises

for the integrand

$$\frac{1}{4\pi|x|} \left(\operatorname{div}_{x} \left[(\partial_{0}\zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right] + \nabla_{x} \left[(\partial_{0}\zeta) \left(\frac{|x|}{c}, x \right) \right] \bullet \frac{1}{c} \frac{x}{|x|} \right]$$

$$= 2 \operatorname{div}_{x} \left[\frac{1}{4\pi|x|} (\partial_{0}\zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right]$$

$$- \frac{1}{4\pi c} (\partial_{0}\zeta) \left(\frac{|x|}{c}, x \right) \left(\nabla_{x} \left(\frac{1}{|x|} \right) \bullet \frac{x}{|x|} + \operatorname{div}_{x} \left[\frac{x}{|x|^{2}} \right] \right)$$

$$= 0$$

$$= 2 \operatorname{div}_{x} \left[\frac{1}{4\pi|x|} (\partial_{0}\zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right]$$

and this gives for the second integral

$$\begin{split} &= \int_{\mathbb{R}^3} 2 \operatorname{div}_x \left[\frac{1}{4\pi |x|} (\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right] \mathrm{dL}^3(x) \\ &= \lim_{\varepsilon \to 0} \int_{\mathrm{B}_{\varepsilon}(0)} 2 \mathrm{div}_x \left[\frac{1}{4\pi |x|} (\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \right] \mathrm{dL}^3(x) \\ &= \lim_{\varepsilon \to 0} \int_{\partial \mathrm{B}_{\varepsilon}(0)} \frac{2}{4\pi |x|} (\partial_0 \zeta) \left(\frac{|x|}{c}, x \right) \frac{1}{c} \frac{x}{|x|} \bullet \left(-\frac{x}{|x|} \right) \mathrm{dH}^2(x) \\ &= -\lim_{\varepsilon \to 0} \int_{\partial \mathrm{B}_1(0)} \frac{1}{2\pi c\varepsilon} (\partial_0 \zeta) \left(\frac{\varepsilon}{c}, \varepsilon \xi \right) \varepsilon^2 \mathrm{dH}^2(\xi) \\ &= 0 \,. \end{split}$$

Thus the first integral on the right-hand side of (12.2) remains and we obtain

$$\left\langle \zeta, \frac{1}{c^2} \partial_t^2 F - \Delta F \right\rangle = -\int_{\mathbb{R}^3} \frac{1}{4\pi |x|} \Delta_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] d\mathcal{L}^3(x) \,.$$

Now for $x \neq 0$ Green's formula yields

$$\zeta\left(\frac{|x|}{c},x\right)\Delta_{x}\left[\frac{1}{|x|}\right] - \frac{1}{|x|}\Delta_{x}\left[\zeta\left(\frac{|x|}{c},x\right)\right]$$
$$= 0$$
$$= \operatorname{div}_{x}\left(\zeta\left(\frac{|x|}{c},x\right)\nabla_{x}\left[\frac{1}{|x|}\right] - \frac{1}{|x|}\nabla_{x}\left[\zeta\left(\frac{|x|}{c},x\right)\right]\right),$$

author: H.W. Alt & G. Witterstein

title: Exercises

hence

$$\begin{split} \left\langle \zeta \,, \, \frac{1}{c^2} \partial_t^2 F - \Delta F \right\rangle &= -\int_{\mathbb{R}^3} \frac{1}{4\pi |x|} \Delta_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] d\mathrm{L}^3(x) \\ &= \lim_{\varepsilon \to 0} \frac{1}{4\pi} \int_{\mathrm{B}_{\varepsilon}(0)} \mathrm{div}_x \left(\zeta \left(\frac{|x|}{c}, x \right) \nabla_x \left[\frac{1}{|x|} \right] - \frac{1}{|x|} \nabla_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] \right) \mathrm{dL}^3(x) \\ &= \lim_{\varepsilon \to 0} \frac{1}{4\pi} \int_{\partial \mathrm{B}_{\varepsilon}(0)} \left(\zeta \left(\frac{|x|}{c}, x \right) \nabla_x \left[\frac{1}{|x|} \right] - \frac{1}{|x|} \nabla_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] \right) \mathbf{\bullet} \\ &\quad \mathbf{\bullet} \left(- \frac{x}{|x|} \right) \mathrm{dH}^2(x) \\ &= \lim_{\varepsilon \to 0} \frac{1}{4\pi} \int_{\partial \mathrm{B}_{\varepsilon}(0)} \left(\zeta \left(\frac{|x|}{c}, x \right) \frac{x}{|x|^3} \mathbf{\bullet} \frac{x}{|x|} + \nabla_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] \mathbf{\bullet} \frac{x}{|x|^2} \right) \mathrm{dH}^2(x) \\ &= \lim_{\varepsilon \to 0} \frac{1}{4\pi} \int_{\partial \mathrm{B}_{\varepsilon}(0)} \left(\zeta \left(\frac{|x|}{c}, x \right) \frac{1}{\varepsilon^2} + \nabla_x \left[\zeta \left(\frac{|x|}{c}, x \right) \right] \mathbf{\bullet} \frac{x}{\varepsilon^2} \right) \mathrm{dH}^2(x) \\ &= \lim_{\varepsilon \to 0} \left(\frac{1}{4\pi} \int_{\partial \mathrm{B}_{1}(0)} \zeta \left(\frac{\varepsilon}{c}, \varepsilon \xi \right) \mathrm{dH}^2(\xi) + \mathcal{O}(\varepsilon) \right) \\ &= \zeta(0, 0) = \left\langle \zeta \,, \, \delta_{(0, 0)} \right\rangle \,. \end{split}$$

Therefore we have shown that ${\cal F}$ is a fundamental solution. We have used the following

$$\nabla_x \left(\frac{1}{|x|}\right) \bullet \frac{x}{|x|} = -\frac{1}{|x|^2}, \qquad \operatorname{div}_x \left(\frac{x}{|x|^2}\right) = \sum_i \partial_{x_i} \left(\frac{x_i}{|x|^2}\right) = \frac{1}{|x|^2},$$
$$\nabla_x \left[\zeta \left(\frac{|x|}{c}, x\right)\right] \bullet \frac{x}{|x|} = (\partial_0 \zeta) \left(\frac{|x|}{c}, x\right) \frac{1}{c} \frac{x}{|x|} \bullet \frac{x}{|x|} + \sum_i (\partial_i \zeta) \left(\frac{|x|}{c}, x\right) \frac{x_i}{|x|},$$
and consequently
$$\left|\nabla_x \left[\zeta \left(\frac{|x|}{c}, x\right)\right] \bullet \frac{x}{|x|}\right| \le \left(\frac{1}{c} |\partial_0 \zeta| + |\nabla_x \zeta|\right) \left(\frac{|x|}{c}, x\right). \qquad \Box$$

Now we compute the time dependent gravitational field of a moving star described by a mass density

$$\varrho_{\varepsilon} \in C^{\infty}(\mathbb{R} \times \mathbb{R}^3) \quad \text{with compact support supp} \, \varrho_{\varepsilon}(t, \bullet) \subset \mathbb{R}^3,$$

so that the gravitational field $\pmb{\phi}_{\varepsilon}$ is the solution of

$$\frac{1}{c^2} \partial_t^2 [\boldsymbol{\phi}_{\varepsilon}] - \Delta [\boldsymbol{\phi}_{\varepsilon}] = [\varrho_{\varepsilon}], \boldsymbol{\phi}_{\varepsilon}(t, x) \to 0 \text{ for } |x| \to \infty.$$
(12.3)

This is stated in the following lemma with an assumption that the star does not move faster than the "velocity of light". We formulate this by describing a moving point

$$\Gamma_{\xi} := \{ (t, \xi(t)) \in \mathbb{R} \times \mathbb{R}^3 ; t \in \mathbb{R} \},$$

supp $\varrho_{\varepsilon}(t, \bullet) \subset B_{\varepsilon}(\xi(t))$ (12.4)

and assuming that

$$|\xi'(t)| \le \lambda$$
 with constant $\lambda < c$. (12.5)

author: H.W. Alt & G. Witterstein

title: Exercises

12.3 Lemma. If the trajectory (12.4) satisfies (12.5) the solution of (12.3) is given by

$$\boldsymbol{\phi}_{\varepsilon}(\widetilde{t},\widetilde{x}):=(\varrho_{\varepsilon}\ast F)(\widetilde{t},\widetilde{x})=\big\langle \ \varrho_{\varepsilon}\big((\widetilde{t},\widetilde{x})-{\scriptscriptstyle\bullet}\big)\,,\,F\,\big\rangle_{\mathscr{D}(\mathbb{R}\times\mathbb{R}^3)}$$

(here the test function for F can be made to have compact support). By the way, the solution ϕ_{ε} is like ϱ_{ε} a C^{∞} -function.

Solution. The support of the fundamental solution is

$$\operatorname{supp} F = \{(t, x) ; t \ge 0, |x| = ct\}.$$

And the support of ρ_{ε} is contained in

$$\operatorname{supp} \varrho_{\varepsilon} \subset \{(s, y) ; |y - \xi(s)| \le \varepsilon\},\$$

hence we have to show that

$$\operatorname{supp} F \cap \operatorname{supp} \varrho_{\varepsilon} \left((\widetilde{t}, \widetilde{x}) - \bullet \right) \tag{12.6}$$

is compact in spacetime, and this uniformly locally in (\tilde{t}, \tilde{x}) . So let

$$(t, x) \in \operatorname{supp} F \cap \operatorname{supp} \varrho_{\varepsilon} \left((\widetilde{t}, \widetilde{x}) - \bullet \right),$$

that is

$$t > 0 ext{ and } |x| = ct,$$

 $s := \widetilde{t} - t ext{ and } y := \widetilde{x} - x ext{ and } |y - \xi(s)| \le \varepsilon.$

Fig. 22: Support of ρ_{ε} (time is up and space is horizontal). Left: The mathematical (t, x)-space, the ellipse surrounds the support shown in (12.6). Right: The physical (s, y)-space, the observer is situated at (\tilde{t}, \tilde{x}) .

This implies

$$|x| = ct$$
 and $\varepsilon \ge |y - \xi(s)| = |\widetilde{x} - \xi(s) - x| \ge |x| - |\widetilde{x} - \xi(s)|$

and therefore

$$ct = |x| \le |\tilde{x} - \xi(s)| + \varepsilon.$$

author: H.W. Alt & G. Witterstein

title: Exercises

Now

$$\begin{split} \xi(s) &= \xi(\widetilde{t}) + \int_{\widetilde{t}}^{s} \xi'(r) \, \mathrm{d}r \\ \implies & |\xi(s) - \xi(\widetilde{t})| \le \lambda |s - \widetilde{t}| = \lambda |t| \\ \implies & c|t| \le |\widetilde{x} - \xi(s)| + \varepsilon \le |\widetilde{x} - \xi(\widetilde{t})| + \lambda |t| + \varepsilon \\ \implies & \frac{|x|}{c} = |t| \le \frac{|\widetilde{x} - \xi(\widetilde{t})| + \varepsilon}{c - \lambda} \,, \end{split}$$

that is, (t, x) is bounded, and this uniformly locally in (\tilde{t}, \tilde{x}) , hence (12.6) is shown, which implies that $\langle \varrho_{\varepsilon}((\tilde{t}, \tilde{x}) - \bullet), F \rangle_{\mathscr{D}(\mathbb{R} \times \mathbb{R}^3)}$ is well defined. That is, we can multiply $\varrho_{\varepsilon}((\tilde{t}, \tilde{x}) - \bullet)$ by a function $\eta \in C_0^{\infty}(\mathbb{R})$ in time which equals 1 in the compact set (12.6). Thus $(t, x) \mapsto \eta(t)\varrho_{\varepsilon}(\tilde{t} - t, \tilde{x} - x)$ is a test function for F. This procedure does not change the value of $\phi_{\varepsilon}(\tilde{t}, \tilde{x})$.

Now we let $\operatorname{supp} \rho_{\varepsilon}$ converge towards Γ_{ξ} as the small "diameter" $\varepsilon \searrow 0$. We describe the movement of the star as a mass point by the distribution (see [Script: Stmt I.2.9 Moving mass point])

$$\langle \zeta, \boldsymbol{\mu}_{\xi} \rangle = \int_{\mathbb{R}} \zeta(t, \xi(t)) \, \mathrm{d}t \quad \text{ for } \zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3).$$

12.4 Theorem. Let (12.5) be satisfied and let $t \mapsto m(t) > 0$ be a continuous function. If now

$$[\varrho_{\varepsilon}] \to m \mu_{\xi} \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$$

for $\varepsilon \to 0$ then

$$[\boldsymbol{\phi}_{\varepsilon}] \to [\boldsymbol{\phi}] \text{ in } \mathscr{D}'(\mathbb{R} \times \mathbb{R}^3; \mathbb{R}),$$

where

$$\begin{split} \boldsymbol{\phi}(t,x) &:= \frac{m(s)}{4\pi \left(1 - \frac{\xi'(s)}{c} \bullet \frac{x - \xi(s)}{|x - \xi(s)|}\right)} \frac{1}{|x - \xi(s)|} \\ & \text{with} \quad t = s + \frac{|x - \xi(s)|}{c} \,, \end{split}$$

hence for $\zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$

$$\langle \zeta, [\boldsymbol{\phi}] \rangle = \int_{\mathbb{R}} \int_{\mathbb{R}^3} \zeta(t, x) \boldsymbol{\phi}(t, x) \, \mathrm{d}\mathrm{L}^3(x) \, \mathrm{d}\mathrm{L}^1(t)$$

=
$$\int_{\mathbb{R}} \int_{\mathbb{R}^3} \zeta \left(s + \frac{|y|}{c}, y + \xi(s) \right) \frac{m(s)}{4\pi |y|} \, \mathrm{d}\mathrm{L}^3(y) \, \mathrm{d}\mathrm{L}^1(s) \, .$$

The function ϕ is the distributional solution of

$$\frac{1}{c^2} \partial_t^2[\boldsymbol{\phi}] - \Delta[\boldsymbol{\phi}] = m \boldsymbol{\mu}_{\boldsymbol{\xi}},$$

$$\boldsymbol{\phi}(t, x) \to 0 \text{ for } |x| \to \infty.$$
(12.7)

As an intermediate step we show that for $\zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$

$$\lim_{\varepsilon \to 0} \langle \zeta, \left[\boldsymbol{\phi}_{\varepsilon} \right] \rangle = \int_{\mathbb{R}} \int_{\mathbb{R}^3} \zeta \left(s + \frac{|y|}{c}, y + \xi(s) \right) \frac{m(s) \, \mathrm{dL}^3(y)}{4\pi |y|} \, \mathrm{dL}^1(s) \,. \tag{12.8}$$

author: H.W. Alt & G. Witterstein

title: Exercises

Solution of (12.8). The assumption says, that for $\varepsilon \searrow 0$

$$\int_{\mathbb{R}\times\mathbb{R}^3} \eta(s,z)\varrho_{\varepsilon}(s,z) \,\mathrm{d}\mathrm{L}^4(s,z) \longrightarrow \int_{\mathbb{R}} m(s)\eta(s,\xi(s)) \,\mathrm{d}\mathrm{L}^1(s)$$

for $\eta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$. We have shown in 12.3 that

$$\begin{split} \boldsymbol{\phi}_{\varepsilon}(t,x) &= \left\langle \left. \varrho_{\varepsilon} \left((t,x) - \bullet \right), \left. F \right. \right\rangle_{\mathscr{D}(\mathbb{R} \times \mathbb{R}^3)} \right. \\ &= \int_{\mathbb{R}^3} \varrho_{\varepsilon} \left(t - \frac{|y|}{c}, x - y \right) \frac{\mathrm{d} \mathrm{L}^3(y)}{4\pi |y|} \,, \end{split}$$

hence for $\zeta \in \mathscr{D}(\mathbb{R} \times \mathbb{R}^3; \mathbb{R})$

$$\begin{split} \langle \zeta \,,\, [\pmb{\phi}_{\varepsilon}] \,\rangle &= \int_{\mathbb{R} \times \mathbb{R}^3} \zeta(t,x) \int_{\mathbb{R}^3} \varrho_{\varepsilon} \Big(t - \frac{|y|}{c}, x - y \Big) \frac{\mathrm{d} \mathrm{L}^3(y)}{4\pi |y|} \,\mathrm{d} \mathrm{L}^4(t,x) \\ &= \int_{\mathbb{R}^3} \left(\int_{\mathbb{R} \times \mathbb{R}^3} \varrho_{\varepsilon}(s,z) \,\zeta \Big(s + \frac{|y|}{c}, y + z \Big) \,\mathrm{d} \mathrm{L}^4(s,z) \right) \frac{\mathrm{d} \mathrm{L}^3(y)}{4\pi |y|} \\ &= \int_{\mathbb{R} \times \mathbb{R}^3} \varrho_{\varepsilon}(s,z) \,\left(\int_{\mathbb{R}^3} \zeta \Big(s + \frac{|y|}{c}, y + z \Big) \frac{\mathrm{d} \mathrm{L}^3(y)}{4\pi |y|} \right) \,\mathrm{d} \mathrm{L}^4(s,z) \\ &= :\eta(s,z) \\ &\longrightarrow \int_{\mathbb{R}} m(s) \eta(s,\xi(s)) \,\mathrm{d} \mathrm{L}^1(s) \quad (\text{see below for the property of } \eta) \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^3} \zeta \Big(s + \frac{|y|}{c}, y + \xi(s) \Big) \frac{m(s) \,\mathrm{d} \mathrm{L}^3(y)}{4\pi |y|} \,\mathrm{d} \mathrm{L}^1(s) \,. \end{split}$$

Here we have used the assumption (12.5), which implies that the intersection of the support of η with Γ_{ξ} is bounded. Therefore η can be multiplied by a function with compact support in such a way that the above integrals are unchanged. It follows that the above convergence is true. To prove this in detail we have to show that

supp
$$\eta \cap U(\Gamma_{\xi})$$
 is bounded, $U(\Gamma_{\xi}) := \{(s, z); z \in B_1(\xi(s))\}$

since ρ_{ε} for small ε has support in the open neighbourhood $U(\Gamma_{\xi})$ of Γ_{ξ} . Here

$$\eta(s,z) := \int_{\mathbb{R}^3} \zeta \left(s + \frac{|y|}{c}, y + z \right) \frac{\mathrm{d} \mathcal{L}^3(y)}{4\pi |y|} \, .$$

Describing the support of ζ by a constant C, that is supp $\zeta \subset B_C(0) \times B_C(0)$, we have for a nonzero contribution of the *y*-integral the constraint

$$\left|s + \frac{|y|}{c}\right| \le C$$
, $|y+z| \le C$,

and for fixed (s, z) it follows $|y| \leq |z| + C$ and therefore the integral exists. Now, for any such (s, z) we get $|s| \leq \frac{|y|}{c} + C$, hence

$$c|s| \le |y| + C \cdot c \le |z| + C \cdot (c+1)$$
.

author: H.W. Alt & G. Witterstein

title: Exercises

Now for $z \in \overline{B_1(\xi(s))}$, where we will use the assumption (12.5),

$$|z| - 1 \le |\xi(s)| = \left|\xi(0) + \int_0^s \xi'(\bar{s}) \,\mathrm{d}\bar{s}\right| \le |\xi(0)| + \lambda |s|,$$

that is

$$\begin{split} c|s| &\leq |y| + C \cdot c \leq |z| + C \cdot (c+1) \\ &\leq |\xi(s)| + 1 + C \cdot (c+1) \leq \lambda |s| + |\xi(0)| + 1 + C \cdot (c+1) \,. \end{split}$$

Since $\lambda < c$ it follows that $(c - \lambda)|s|$ is estimated by a constant, and hence also |z| - 1 is bounded.

Solution of the time equation. Define for given x the function $t = \hat{t}(s, x)$ with

$$t = \hat{t}(s, x) = s + \frac{|x - \xi(s)|}{c}$$

It has derivative

$$\partial_s \widehat{t}(s,x) = 1 - \frac{\dot{\xi}(s)}{c} \bullet \frac{x - \xi(s)}{|x - \xi(s)|},$$

which is positive by (12.5). Hence there exists the inverse function $s = \hat{s}(t, x)$, which satisfies

$$\widehat{s}(t,x) + \frac{|x-\xi(\widehat{s}(t,x))|}{c} = \left(s + \frac{|x-\xi(s)|}{c}\right)\Big|_{s=\widehat{s}(t,x)} = t,$$

with

$$\partial_t \widehat{s}(t,x) = \frac{1}{\partial_s \widehat{t}(\widehat{s}(t,x),x)} = \left. \frac{1}{1 - \frac{\dot{\xi}(s)}{c} \bullet \frac{x - \xi(s)}{|x - \xi(s)|}} \right|_{s = \widehat{s}(t,x)} .$$

Solution of the statement. We have shown (12.8) where the coordinates (s, y) have to be transformed to (t, x). First we replace y by x:

$$y = x - \xi(s)$$
, $dL^{3}(y) = dL^{3}(x)$

Then we replace s by t:

$$t = s + \frac{|x - \xi(s)|}{c}$$
, $s = \widehat{s}(t, x)$, $dL^1(s) = \partial_t \widehat{s}(t, x) dL^1(t)$.

With these transformations we obtain

$$\begin{split} &\lim_{\varepsilon \to 0} \left\langle \zeta \,, \, [\boldsymbol{\phi}_{\varepsilon}] \right\rangle = \int_{\mathbb{R}} \int_{\mathbb{R}^3} \zeta \left(s + \frac{|y|}{c}, y + \xi(s) \right) \frac{m(s) \, \mathrm{d} \mathrm{L}^3(y)}{4\pi |y|} \, \mathrm{d} \mathrm{L}^1(s) \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^3} \zeta \left(s + \frac{|x - \xi(s)|}{c}, x \right) \frac{m(s) \, \mathrm{d} \mathrm{L}^3(x)}{4\pi |x - \xi(s)|} \, \mathrm{d} \mathrm{L}^1(s) \\ &= \int_{\mathbb{R}^3} \left(\int_{\mathbb{R}} \zeta \left(s + \frac{|x - \xi(s)|}{c}, x \right) \frac{m(s)}{4\pi |x - \xi(s)|} \, \mathrm{d} \mathrm{L}^1(s) \right) \, \mathrm{d} \mathrm{L}^3(x) \\ &= \int_{\mathbb{R}^3} \int_{\mathbb{R}} \zeta(t, x) \, \partial_t \widehat{s}(t, x) \frac{m(\widehat{s}(t, x))}{4\pi |x - \xi(\widehat{s}(t, x))|} \, \mathrm{d} \mathrm{L}^1(t) \, \mathrm{d} \mathrm{L}^3(x) \,, \end{split}$$

author: H.W. Alt & G. Witterstein

title: Exercises

hence this is equal to $\langle \zeta, [\boldsymbol{\phi}] \rangle$ if

$$\boldsymbol{\phi}(t,x) = \partial_t \widehat{s}(t,x) \frac{m(\widehat{s}(t,x))}{4\pi |x - \xi(\widehat{s}(t,x))|}$$
(12.9)

which is the same as in the statement.

The same one obtains with the transformation

$$\begin{bmatrix} t \\ x \end{bmatrix} = \tau \Big(\begin{bmatrix} s \\ y \end{bmatrix} \Big) := \begin{bmatrix} s + \frac{|y|}{c} \\ y + \xi(s) \end{bmatrix}.$$

The Jacobi determinant of this transformation is

$$\det \mathcal{D}_{(s,y)}\tau = \det \begin{bmatrix} 1 & \frac{y^{\mathrm{T}}}{c|y|} \\ \dot{\xi}(s) & \mathrm{Id} \end{bmatrix} = 1 - \frac{\dot{\xi}(s)}{c} \bullet \frac{y}{|y|} \ge 1 - \frac{|\dot{\xi}(s)|}{c} > 0$$

by assumption (12.5). Then one obtains with the transformation τ^{-1}

$$\begin{split} &\lim_{\varepsilon \to 0} \left\langle \zeta , \left[\boldsymbol{\phi}_{\varepsilon} \right] \right\rangle = \int_{\mathbb{R}^{4}} \zeta \left(s + \frac{|y|}{c}, y + \xi(s) \right) \frac{m(s)}{4\pi |y|} \, \mathrm{dL}^{4}(s, y) \\ &= \int_{\mathbb{R}^{4}} \zeta(t, x) \left. \frac{m(s)}{4\pi |y| \mathrm{det} \, \mathrm{D}\tau(s, y)} \right|_{(s, y) = \tau^{-1}(t, x)} \, \mathrm{dL}^{4}(t, x) \\ &= \int_{\mathbb{R}^{4}} \zeta(t, x) \, \boldsymbol{\phi}(t, x) \, \mathrm{dL}^{4}(t, x) = \left\langle \zeta , \left[\boldsymbol{\phi} \right] \right\rangle \,, \end{split}$$

if

$$\boldsymbol{\phi}(t,x) = \left. \left(\frac{1}{\det \mathrm{D}\tau(s,y)} \frac{m(s)}{4\pi |y|} \right) \right|_{(s,y)=\tau^{-1}(t,x)} \,,$$

which again is the same as in the statement.

References: FAZ Artikel am 3.12.2015: Der Satellit LISA-Pathfinder wurde gestartet. SuW Artikel von 8|2016: LISA-Pathfinder hat die Testphase erfolgreich durchgeführt. Die Messung von möglichen Gravitationswellen soll somit Mitte der 30er Jahre durchgeführt werden.

title: Exercises

Eine Einführung in Differentialformen erhält man zum Beispiel in den Büchern von Otto Forster [13-1] und von Walter Rudin [13-3].¹ Das Lemma von Poincaré wurde im Zusammenhang mit dem Faraday'schen Induktionsgesetz im Skript formuliert. Hier geben wir einen Beweis, der das Vorlesungsskript von Ossa [13-2, 3 Das Poincaré-Lemma] als Grundlage nahm.

13.1 Lemma von Poincaré. Auf einem einfach zusammenhängenden Gebiet \mathcal{U} im \mathbb{R}^N ist jede *geschlossene* Differentialform, d.h. ω mit $d\omega = 0$, eine *exakte* Form, d.h. es gibt eine Differentialform λ mit $d\lambda = \omega$. *Hinweis:* λ ist nicht eindeutig definiert.

Zum Beweis nehmen wir an, dass \mathcal{U} sternförmig um 0 ist. Die Variable werde $y \in \mathbb{R}^N$ genannt und die allgemeine Differentialform ω werde von *m*-ter Ordnung genommen, das heißt es ist

$$\omega(y) = \sum_{J \in \mathfrak{J}_m} \omega_J(y) \, \mathrm{d} y_J$$

(zu ω sind ω_J eindeutig definiert), wobei \mathfrak{J}_m die Menge aller geordneten *m*-Tupel ist, das heißt

$$\mathfrak{J}_m := \{J = \{j_1, \dots, j_m\}; \ 1 \le j_1 < \dots < j_m \le n\},\$$

und dy_J ist die zu $J \in \mathfrak{J}_m$ gehörige Basisdifferentialform, das heißt

$$\mathrm{d} y_J := \mathrm{d} y_{j_1} \wedge \mathrm{d} y_{j_2} \wedge \ldots \wedge \mathrm{d} y_{j_m} \,.$$

Wir definieren nun einen Integraloperator T_m , der eine *m*-Differentialform auf eine Differentialform der Ordnung (m-1) abbildet,

$$\begin{split} \mathbf{T}_{m}(\omega) &:= \sum_{J \in \mathfrak{J}_{m}} \sum_{\nu=1}^{m} (-1)^{\nu-1} \mathbf{I}_{m}(\omega_{J}) \bullet \mathbf{e}_{j_{\nu}} \, \mathrm{d}y_{J \setminus \{j_{\nu}\}} = \sum_{J \in \mathfrak{J}_{m}} \mathbf{T}_{m}^{J}(\omega_{J}) \,, \\ \mathbf{T}_{m}^{J}(\alpha) &:= \sum_{\nu=1}^{m} (-1)^{\nu-1} \mathbf{I}_{m}(\alpha) \bullet \mathbf{e}_{j_{\nu}} \, \mathrm{d}y_{J \setminus \{j_{\nu}\}} \quad \text{für } J \in \mathfrak{J}_{m}, \\ \mathbf{I}_{m}(\alpha)(y) &:= \int_{0}^{1} s^{m-1} \alpha(sy) y \, \mathrm{d}s \,, \end{split}$$

wobei $\alpha : \mathbb{R}^n \to \mathbb{R}$. Es ist $T_m(\alpha dy_J) = T_m^J(\alpha)$ für $J \in \mathfrak{J}_m$. Wir beweisen folgendes allgemeinere Theorem.

13.2 Theorem. Es gilt

$$d(T_m(\omega)) + T_{m+1}(d\omega) = \omega$$
.

Solution des Lemmas von Poincaré. Unter der Voraussetzung d $\omega = 0$ folgt $d(T_m(\omega)) = \omega$, also die Behauptung, wenn wir $\lambda := T_m(\omega)$ definieren.

author: H.W. Alt & G. Witterstein

title: Exercises

 $^{^{1}}$ Wir setzen hier elementare Kenntnisse über Differentialformen voraus.

Nun gilt für allgemeine Differentialformen ω wegen der Linearität der Ableitung

$$d(\mathbf{T}_m(\omega)) = \sum_J d(\mathbf{T}_m^J(\omega_J)).$$

Also führen wir die Behauptung von Theorem 13.2 zurück auf

13.3 Lemma. Es gilt für alle $J \in \mathfrak{J}_m$ und alle α

$$d(\mathbf{T}_m^J(\alpha)) + \sum_{\substack{k=1\\k\notin J}}^n \mathbf{T}_{m+1}^{J\cup\{k\}} \left((-1)^{\mu_J(k)-1} \partial_k \alpha \right) = \alpha \, \mathrm{d}y_J \,,$$

wobei $\mu_J(k) \in \mathbb{Z}$ für $k \notin J$ mit $dy_{J \cup \{k\}} = (-1)^{\mu_J(k)-1} dy_k \wedge dy_J$.

Solution des Theorems. Wenn wir das Lemma für J auf $\alpha := \omega_J$ anwenden, erhalten wir

$$d(\mathbf{T}_m^J(\omega_J)) + \sum_{\substack{k=1\\k\notin J}}^n \mathbf{T}_{m+1}^{J\cup\{k\}} \left((-1)^{\mu_J(k)-1} \partial_k \omega_J \right) = \omega_J \, \mathrm{d}y_J \,.$$

Indem wir diese Identitäten nun über all
e $J\in \mathfrak{J}_m$ aufaddieren erhalten wir

$$\omega = \sum_{J} \omega_{J} \, \mathrm{d}y_{J}$$

$$= \sum_{J} \left(\mathrm{d} \left(\mathrm{T}_{m}^{J}(\omega_{J}) \right) + \sum_{\substack{k=1\\k \notin J}}^{n} \mathrm{T}_{m+1}^{J \cup \{k\}} \left((-1)^{\mu_{J}(k)-1} \partial_{k} \omega_{J} \right) \right)$$

$$= \mathrm{d} \left(\sum_{J} \mathrm{T}_{m}^{J}(\omega_{J}) \right) + \sum_{J} \sum_{\substack{k=1\\k \notin J}}^{n} \mathrm{T}_{m+1}^{J \cup \{k\}} \left((-1)^{\mu_{J}(k)-1} \partial_{k} \omega_{J} \right),$$

also folgt das Theorem, wenn wir zeigen können, dass der zweite Summand auf der rechten Seite gleich $\mathcal{T}_{m+1}(\,\mathrm{d}\omega)$ ist. Nun ist

$$d\omega = \sum_J d(\omega_J dy_J)$$
 und $d(\omega_J dy_J) = \sum_{k=1}^n \partial_k \omega_J dy_k \wedge dy_J$.

Da $dy_k \wedge dy_J = 0$ für $k \in J$, und da für $k \notin J$

$$\mathrm{d}y_k \wedge \mathrm{d}y_J = \mathrm{d}y_k \wedge \mathrm{d}y_{j_1} \wedge \dots \wedge \mathrm{d}y_{j_m} = (-1)^{\mu_J(k)-1} \mathrm{d}y_{J \cup \{k\}}$$

wobe
i $\mu_J(k)=\mu,$ wenn d y_k direkt vor
d y_{j_μ} eingeordnet werden muss, erhalten wir

$$\mathrm{d}\omega = \sum_{J} \sum_{\substack{k=1\\k \notin J}}^{n} \partial_k \omega_J \,\mathrm{d}y_k \wedge \,\mathrm{d}y_J = \sum_{J} \sum_{\substack{k=1\\k \notin J}}^{n} (-1)^{\mu_J(k)-1} \partial_k \omega_J \,\mathrm{d}y_{J \cup \{k\}} \,,$$

author: H.W. Alt & G. Witterstein

title: Exercises

und damit

$$T_{m+1}(d\omega) = \sum_{J} \sum_{\substack{k=1\\k \notin J}}^{n} (-1)^{\mu_{J}(k)-1} T_{m+1}(\partial_{k}\omega_{J} dy_{J\cup\{k\}})$$

=
$$\sum_{J} \sum_{\substack{k=1\\k \notin J}}^{n} (-1)^{\mu_{J}(k)-1} T_{m+1}^{J\cup\{k\}}(\partial_{k}\omega_{J}) = \sum_{J} \sum_{\substack{k=1\\k \notin J}}^{n} T_{m+1}^{J\cup\{k\}}((-1)^{\mu_{J}(k)-1} \partial_{k}\omega_{J}),$$

was noch zu zeigen war.

Somit folgt unsere Behauptung, der Satz von Poincaré, wie gerade gezeigt, aus dem Lemma 13.3. Wir geben jetzt einen Beweis dieses Lemmas, wobei wir ein festes $J = \{j_1, \ldots, j_m\}$ mit $j_1 < \ldots < j_m$ wählen. Nun ist einerseits

$$d(\mathbf{T}_{m}^{J}(\alpha)) = d\left(\sum_{\nu=1}^{m} (-1)^{\nu-1} \mathbf{I}_{m}(\alpha) \bullet \mathbf{e}_{j_{\nu}} \wedge dy_{J \setminus \{j_{\nu}\}}\right)$$
$$= \sum_{\nu=1}^{m} \sum_{k=1}^{n} \partial_{k} \left((-1)^{\nu-1} \mathbf{I}_{m}(\alpha) \bullet \mathbf{e}_{j_{\nu}} \right) dy_{k} \wedge dy_{J \setminus \{j_{\nu}\}}$$
$$= \sum_{k=1}^{n} \sum_{\nu=1}^{m} (-1)^{\nu-1} \partial_{k} \mathbf{I}_{m}(\alpha) \bullet \mathbf{e}_{j_{\nu}} dy_{k} \wedge dy_{J \setminus \{j_{\nu}\}}.$$

Zum anderen ist für k, wenn $k \notin J$ ist, $\widehat{J}(k) := J \cup \{k\} = \{\widehat{j}_1, \dots, \widehat{j}_{m+1}\}$ mit $1 \leq \widehat{j}_1 < \dots < \widehat{j}_{m+1} \leq n$ und somit für $k = \widehat{j}_\mu, \mu \in \{1, \dots, m+1\},$

$$(-1)^{\mu_J(k)-1} dy_k \wedge dy_J = dy_{\widehat{J}(k)}, \text{ wobei also } \mu_J(k) = \mu \text{ und } k = \hat{j}_{\mu}.$$

Jeder Summand $(-1)^{\mu(k)-1}\partial_k \alpha \, \mathrm{d} y_{\widehat{J}(k)}$ ist eine (m+1)-Differentialform. Wir wenden mit $\beta := (-1)^{\mu(k)-1}\partial_k \alpha$ den Operator $\mathrm{T}_{m+1}^{\widehat{J}(k)}(\beta)$ an und erhalten eine *m*-Differentialform. Dieser Operator ist nach obiger Definition gegeben durch

$$\mathbf{T}_{m+1}^{K}(\beta) := \sum_{\mu=1}^{m+1} (-1)^{\mu-1} \mathbf{I}_{m+1}(\beta) \bullet \mathbf{e}_{\hat{j}_{\mu}} \, \mathrm{d}y_{K \setminus \{\hat{j}_{\mu}\}}$$

für $K = {\hat{j}_1, \dots, \hat{j}_{m+1}} \in \mathfrak{J}_{m+1}$. Wir erhalten

$$\sum_{\substack{k=1\\k\notin J}}^{n} \mathrm{T}_{m+1}^{\hat{j}(k)} \left((-1)^{\mu_{J}(k)-1} \partial_{k} \alpha \right)$$

= $\sum_{\substack{k=1\\k\notin J}}^{n} \sum_{\mu=1}^{m+1} (-1)^{\mu-1} \mathrm{I}_{m+1} \left((-1)^{\mu_{J}(k)-1} \partial_{k} \alpha \right) \bullet \mathbf{e}_{\hat{j}_{\mu}} \, \mathrm{d}y_{\hat{j}(k) \setminus \{\hat{j}_{\mu}\}}$
= $\sum_{\substack{k=1\\k\notin J}}^{n} \sum_{\mu=1}^{m+1} (-1)^{\mu+\mu_{J}(k)} \mathrm{I}_{m+1} (\partial_{k} \alpha) \bullet \mathbf{e}_{\hat{j}_{\mu}} \, \mathrm{d}y_{\hat{j}(k) \setminus \{\hat{j}_{\mu}\}} \, .$

author: H.W. Alt & G. Witterstein

title: Exercises

time: 22-Feb-2019

Wir unterscheiden nun zwei Fälle, $\mu = \mu_J(k)$ und $\mu \neq \mu_J(k)$. Im Fall $\mu = \mu_J(k)$ ist $\hat{j}_{\mu} = k$, somit gilt $\hat{J}(k) \setminus \{\hat{j}_{\mu}\} = \hat{J}(k) \setminus \{k\} = J$ und das Vorzeichen ist $(-1)^{\mu+\mu_J(k)} = (-1)^{2\mu_J(k)} = 1$. Im Fall $\mu \neq \mu_J(k)$ ist $\hat{j}_{\mu} \neq k$, daher $\hat{j}_{\mu} \in J$, also

$$\hat{j}_{\mu} = j_{\nu} \text{ mit } \begin{cases} \nu = \mu \text{ falls } \mu < \mu_J(k), \\ \nu = \mu - 1 \text{ falls } \mu > \mu_J(k), \end{cases}$$

und es ist $\widehat{J}(k) \setminus {\{\hat{j}_{\mu}\}} = {\{k\} \cup (J \setminus {\{j_{\nu}\}}), \text{ sowie}$

falls
$$\mu < \mu_J(k)$$
: $(-1)^{\mu_J(k)-1} dy_{\hat{j}(k) \setminus \{\hat{j}_\mu\}} = -dy_k \wedge dy_{J \setminus \{j_\nu\}},$
falls $\mu > \mu_J(k)$: $(-1)^{\mu_J(k)-1} dy_{\hat{j}(k) \setminus \{\hat{j}_\mu\}} = dy_k \wedge dy_{J \setminus \{j_\nu\}},$

da im ersten Fall nur $\mu_J(k) - 2$ elementare Vertauschungen, gegenüber allen $\mu_J(k) - 1$ Vertauschungen im zweiten Fall, durchgeführt werden müssen. Also, wenn

$$\sigma = \begin{cases} 1 \text{ falls } \mu < \mu_J(k) ,\\ 0 \text{ falls } \mu > \mu_J(k) , \end{cases}$$

gilt für alle μ , da $\nu = \mu - 1 + \sigma$,

$$(-1)^{\mu+\mu_J(k)} \, \mathrm{d}y_{\widehat{J}(k)\setminus\{\widehat{J}_{\mu}\}} = (-1)^{\mu+1+\sigma} \, \mathrm{d}y_k \wedge \, \mathrm{d}y_{J\setminus\{j_{\nu}\}} = (-1)^{\nu} \, \mathrm{d}y_k \wedge \, \mathrm{d}y_{J\setminus\{j_{\nu}\}} \,.$$

Einsetzen dieser zwei Fälle in obiges Integral ergibt

(

$$\sum_{\substack{k=1\\k\notin J}}^{n} \mathrm{T}_{m+1}^{\widehat{J}(k)} \left((-1)^{\mu_{J}(k)-1} \partial_{k} \alpha \right) = \sum_{\substack{k=1\\k\notin J}}^{n} \sum_{\substack{\mu=1\\k\notin J}}^{m+1} (-1)^{\mu+\mu_{J}(k)} \mathrm{I}_{m+1} (\partial_{k} \alpha) \bullet \mathbf{e}_{\hat{j}_{\mu}} \, \mathrm{d}y_{\widehat{J}(k) \setminus \{\hat{j}_{\mu}\}}$$
$$= \sum_{\substack{k=1\\k\notin J}}^{n} \mathrm{I}_{m+1} (\partial_{k} \alpha) \bullet \mathbf{e}_{k} \, \mathrm{d}y_{J} + \sum_{\substack{k=1\\k\notin J}}^{n} \sum_{\nu=1}^{m} (-1)^{\nu} \mathrm{I}_{m+1} (\partial_{k} \alpha) \bullet \mathbf{e}_{j_{\nu}} \, \mathrm{d}y_{k} \wedge \, \mathrm{d}y_{J \setminus \{j_{\nu}\}}$$

Der Term von oben ist

$$d(\mathbf{T}_m^J(\alpha)) = \sum_{k=1}^n \sum_{\nu=1}^m (-1)^{\nu-1} \partial_k \mathbf{I}_m(\alpha) \bullet \mathbf{e}_{j_\nu} \, \mathrm{d}y_k \wedge \, \mathrm{d}y_{J \setminus \{j_\nu\}}$$
$$= \sum_{\substack{k=1\\k \in J}}^n \partial_k \mathbf{I}_m(\alpha) \bullet \mathbf{e}_k \, \mathrm{d}y_J + \sum_{\substack{k=1\\k \notin J}}^n \sum_{\nu=1}^m (-1)^{\nu-1} \partial_k \mathbf{I}_m(\alpha) \bullet \mathbf{e}_{j_\nu} \, \mathrm{d}y_k \wedge \, \mathrm{d}y_{J \setminus \{j_\nu\}} \,,$$

denn im Falle $k\in J$ ist $\,\mathrm{d} y_k\wedge\,\mathrm{d} y_{J\backslash\{j_\nu\}}=0,$ es sei denn $j_\nu=k$ und dann ist

$$(-1)^{\nu-1} \,\mathrm{d} y_k \wedge \,\mathrm{d} y_{J \setminus \{j_\nu\}} = \,\mathrm{d} y_J \,.$$

Jetzt können wir die Summe beider Terme bilden, und die Summe ist gleich

$$= \sum_{\substack{k=1\\k\in J}}^{n} \partial_k \mathbf{I}_m(\alpha) \bullet \mathbf{e}_k \, \mathrm{d}y_J + \sum_{\substack{k=1\\k\notin J}}^{n} \mathbf{I}_{m+1}(\partial_k \alpha) \bullet \mathbf{e}_k \, \mathrm{d}y_J + \sum_{\substack{k=1\\k\notin J}}^{n} \mathbf{I}_{m+1}(\partial_k \alpha) \bullet \mathbf{e}_k \, \mathrm{d}y_J + \sum_{\substack{k=1\\k\notin J}}^{n} \sum_{\nu=1}^{m} (-1)^{\nu-1} \left(\partial_k \mathbf{I}_m(\alpha) - \mathbf{I}_{m+1}(\partial_k \alpha) \right) \bullet \mathbf{e}_{j_\nu} \, \mathrm{d}y_k \wedge \, \mathrm{d}y_{J \setminus \{j_\nu\}} \, .$$

$$(13.1)$$

author: H.W. Alt & G. Witterstein

title: Exercises

Jetzt machen wir von der Gestalt der Integrale Gebrauch, die erfüllen (Beweis folgt unten)

$$I_{m+1}(\partial_k \alpha) = \partial_k I_m(\alpha) - \int_0^1 s^{m-1} \alpha(sy) \mathbf{e}_k \,\mathrm{d}s \tag{13.2}$$

Dies setzen wir in den letzten Summanden von (13.1) ein, und da der letzte Term ein Vielfaches von \mathbf{e}_k ist, erhalten wir in (13.1) das Skalarprodukt $\mathbf{e}_k \bullet \mathbf{e}_{j_\nu}$, was aber 0 ist wegen $k \notin J$. Also ist (13.1) gleich

$$d(\mathbf{T}_{m}^{J}(\alpha)) + \sum_{\substack{k=1\\k\notin J}}^{n} \mathbf{T}_{m+1}^{\widehat{J}(k)} \left((-1)^{\mu_{J}(k)-1} \partial_{k} \alpha \right)$$

$$= \sum_{\substack{k=1\\k\notin J}}^{n} \partial_{k} \mathbf{I}_{m}(\alpha) \bullet \mathbf{e}_{k} \, \mathrm{d}y_{J} + \sum_{\substack{k=1\\k\notin J}}^{n} \mathbf{I}_{m+1}(\partial_{k} \alpha) \bullet \mathbf{e}_{k} \, \mathrm{d}y_{J} \,.$$
(13.3)

Dann ersetzen wir zunächst $\partial_k I_m(\alpha)$ in (13.3) gemäß der Eigenschaft (13.2)

$$=\sum_{\substack{k=1\\k\in J}}^{n} \left(\int_{0}^{1} s^{m-1} \alpha(sy) \mathbf{e}_{k} \, \mathrm{d}s\right) \bullet \mathbf{e}_{k} \, \mathrm{d}y_{J} + \sum_{k=1}^{n} \mathrm{I}_{m+1}(\partial_{k}\alpha)(y) \bullet \mathbf{e}_{k} \, \mathrm{d}y_{J}$$
$$= \left(m \int_{0}^{1} s^{m-1} \alpha(sy) \, \mathrm{d}s + \sum_{k=1}^{n} \mathrm{I}_{m+1}(\partial_{k}\alpha)(y) \bullet \mathbf{e}_{k}\right) \mathrm{d}y_{J},$$

was endgültig nach der Identität

$$\alpha(y) = \sum_{k=1}^{n} \mathbf{I}_{m+1}(\partial_k \alpha)(y) \bullet \mathbf{e}_k + m \int_0^1 s^{m-1} \alpha(sy) \,\mathrm{d}s$$
(13.4)

gleich $\alpha \, \mathrm{d} y_J$ ist. Solution von (13.2).

$$I_{m+1}(\partial_k \alpha)(y) = \int_0^1 s^m \partial_k \alpha(sy) y \, \mathrm{d}s = \int_0^1 s^{m-1} \frac{\mathrm{d}}{\mathrm{d}y_k} (\alpha(sy)) y \, \mathrm{d}s$$
$$= \frac{\mathrm{d}}{\mathrm{d}y_k} \Big(\int_0^1 s^{m-1} \alpha(sy) y \, \mathrm{d}s \Big) - \int_0^1 s^{m-1} \alpha(sy) \frac{\mathrm{d}}{\mathrm{d}y_k} y \, \mathrm{d}s$$
$$= \frac{\mathrm{d}}{\mathrm{d}y_k} \big(I_m(\alpha)(y) \big) - \int_0^1 s^{m-1} \alpha(sy) \mathbf{e}_k \, \mathrm{d}s$$

author: H.W. Alt & G. Witterstein

title: Exercises

Solution von (13.4).

$$\begin{aligned} \alpha(y) &= \left[s^m \alpha(sy)\right]_0^1 = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} \left(s^m \alpha(sy)\right) \mathrm{d}s \\ &= \int_0^1 m s^{m-1} \alpha(sy) \, \mathrm{d}s + \int_0^1 s^m \nabla \alpha(sy) \bullet y \, \mathrm{d}s \\ &= m \int_0^1 s^{m-1} \alpha(sy) \, \mathrm{d}s + \sum_{k=1}^n \left(\int_0^1 s^m (\partial_k \alpha)(sy) y \, \mathrm{d}s\right) \bullet \mathbf{e}_k \, . \\ &= \mathrm{I}_{m+1}(\partial_k \alpha)(y) \end{aligned}$$

Fig. 23: Mit den Differentialoperatoren $d_m := d: \mathfrak{J}_m \to \mathfrak{J}_{m+1}$ und den Integraloperatoren T_m gilt die Identität $d_{m-1}T_m + T_{m+1}d_m = Id_m$ auf \mathfrak{J}_m , was auch gerne als dT + Td = Id geschrieben wird.

References

- [13-1] Otto Forster: Analysis 3, Integral rechnung im $\mathbb{R}^n.$ 3. Auflage. Vieweg Verlag 1999
- [13-2] Erich Ossa: Vorlesung Analysis III. Vektoranalysis. Universität Wuppertal WS 04/05 http://www2.math.uni-wuppertal.de/~schuster/ teaching/uebungen/analysisIII/ana3b.pdf
- [13-3] Walter Rudin: Principles of Mathematical Analysis. Third Edition. McGraw-Hill 1976

author: H.W. Alt & G. Witterstein

title: Exercises

- Robert Emden: Gaskugeln. Anwendungen der Mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme. B. Teubner 1907
- [2] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott: MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER. The Astrophysical Journal, 692:1075–1109, 2009. doi:10.1088/0004-637X/692/2/1075
- [3] S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, R. Genzel: THE ORBIT OF THE STAR S2 AROUND SGR A* FROM VERY LARGE TELESCOPE AND KECK DATA. The Astrophysical Journal, 707:114–117, 2009. doi:10.1088/0004-637X/707/2/L114
- [4] Vladimír Pohánka: Gravitational field of the homogeneous rotational ellipsoidal body: a simple derivation and applications. Contributions to Geophysics and Geodesy Vol. 41/2 (117-157). 2011
- [5] William F. Welsh & Laurance R. Doyle: *Planeten mit zwei Sonnen*. Spektrum der Wissenschaft. Mai 2014
- [6] Ferne Sterne und Planeten. Spektrum der Wissenschaft Spezial 2/2014.
- [7] Die Geburt des Universums. Serie Spektrum der Wissenschaft. Feb. 2015 Teil 1: Niayesh Afshordi, Robert B. Mann, Razieh Pourhasan. Das Schwarze Loch am Beginn der Zeit. Mar. 2015 Teil 2: Lawrence M. Krauss. Wellenschlag des Urknalls. Apr. 2015 Teil 3: Michael D. Lemonick. Die ersten Sterne. Elena Sellentin. Mission DARE. Spektrum der Wissenschaft, Feb.-Apr. 2015

22-Feb-2019

2019/02/22/12:18

12:18

author: H.W. Alt & G. Witterstein

title: Exercises